immortalwrt/target/linux/ath79/image/lzma-loader/src/board.c
INAGAKI Hiroshi ba723a3f6c ath79: add support for NEC Aterm WG600HP
NEC Aterm WG600HP is a 2.4/5 GHz band 11n (Wi-Fi 4) router, based on
AR9344.

Specification:

- SoC             : Atheros AR9344
- RAM             : DDR2 128 MiB (2x Hynix H5PS5162GFR-S6C)
- Flash           : SPI-NOR 8 MiB (Macronix MX25L6406EMI-12G)
- WLAN            : 2.4/5 GHz 2T2R
  - 2.4 GHz       : Atheros AR9344 (SoC)
  - 5 GHz         : Atheros AR9382
- Ethernet        : 5x 10/100/1000 Mbps
  - switch        : Atheros AR8327
- LEDs/Keys (GPIO): 10x/4x
  - note          : all LEDs are controlled by ath9k chip (AR9382)
- UART            : through-hole on PCB
  - assignment    : 3.3V, GND, NC, TX, RX from tri-angle marking
  - settings      : 9600n8
- USB             : 1x USB 2.0 Type-A
  - hub (internal): NEC uPD720114
- Power           : 12 VDC, 1.5 A (Max. 16 W)
- Stock OS        : NetBSD based

Flash instruction using initramfs-factory.bin image (StockFW WebUI):

1. Boot WG600HP with router mode normally
2. Access to the WebUI ("http://aterm.me/" or "http://192.168.0.1/") on
   the device and open firmware update page ("ファームウェア更新")
3. Select the OpenWrt initramfs-factory.bin image and click update
   ("更新") button
4. After updating, the device will be rebooted and booted with OpenWrt
   initramfs image
5. On the initramfs image, upload (or download) uboot.bin and
   sysupgrade.bin image to the device
6. Replace the bootloader with a uboot.bin image

   mtd write <uboot.bin image> bootloader

7. Perform sysupgrade with a sysupgrade.bin image

   sysupgrade <sysupgrade image>

8. Wait ~120 seconds to complete flashing

Flash instruction using initramfs-factory.bin image (bootloader CLI):

 1. Connect and open serial console
 2. Power on WG600HP and interrupt bootloader by ESC key
 3. Login to the bootloader CLI with a password "chiron"
 4. Start TFTP server by "tftpd" command
 5. Upload initramfs-factory.bin via tftp from your computer

   example (Windows): tftp -i 192.168.0.1 PUT initramfs-factory.bin

 6. Boot initramfs image by "boot" command
 7. On the initramfs image, back up the stock bootloader and firmware if
   needed
 8. Upload (or download) uboot.bin and sysupgrade.bin image to the device
 9. Replace the bootloader with a uboot.bin image
10. Perform sysupgrade with a sysupgrade.bin image
11. Wait ~120 seconds to complete flashing

Notes:

- All LEDs are connected to the GPIO controller on the ath9k chip
  (AR9382) and controlled by it. Those LEDs are probed after probing of
  ath9k chip, so they cannot be handled as status LEDs of OpenWrt while
  booting.

- A reset pin of the internal USB hub is connected to the GPIO
  controller of the ath9k chip, like LEDs above. That hub will be
  detected after probing of the ath9k chip.

- The stock bootloader requires an unknown filesystem on firmware area
  in the flash. Booting of OpenWrt from that filesystem cannot be
  handled, so the bootloader needs to be replaced to mainline U-Boot
  before OpenWrt installation.

MAC Addresses:

LAN    : A4:12:42:xx:xx:A0 (config,  0x6 (hex))
WAN    : A4:12:42:xx:xx:A1 (config,  0xc (hex))
2.4 GHz: A4:12:42:xx:xx:A2 (config,  0x0 (hex) / art, 0x1002 (hex))
5 GHz  : A4:12:42:xx:xx:A3 (config, 0x12 (hex) / art, 0x5002 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15432
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2024-07-28 18:47:56 +02:00

289 lines
7.8 KiB
C

/*
* LZMA compressed kernel loader for Atheros AR7XXX/AR9XXX based boards
*
* Copyright (C) 2011 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <stddef.h>
#include "config.h"
#include "printf.h"
#include "ar71xx_regs.h"
#define READREG(r) *(volatile unsigned int *)(r)
#define WRITEREG(r,v) *(volatile unsigned int *)(r) = v
#define KSEG1ADDR(_x) (((_x) & 0x1fffffff) | 0xa0000000)
#define UART_BASE 0xb8020000
#define UART_TX 0
#define UART_LSR 5
#define UART_LSR_THRE 0x20
#define UART_READ(r) READREG(UART_BASE + 4 * (r))
#define UART_WRITE(r,v) WRITEREG(UART_BASE + 4 * (r), (v))
void board_putc(int ch)
{
while (((UART_READ(UART_LSR)) & UART_LSR_THRE) == 0);
UART_WRITE(UART_TX, ch);
while (((UART_READ(UART_LSR)) & UART_LSR_THRE) == 0);
}
#ifdef CONFIG_BOARD_TL_WR1043ND_V1
static void tlwr1043nd_init(void)
{
unsigned int reg = KSEG1ADDR(AR71XX_RESET_BASE);
unsigned int t;
t = READREG(reg + AR913X_RESET_REG_RESET_MODULE);
t |= AR71XX_RESET_GE0_PHY;
WRITEREG(reg + AR913X_RESET_REG_RESET_MODULE, t);
/* flush write */
t = READREG(reg + AR913X_RESET_REG_RESET_MODULE);
}
#else
static inline void tlwr1043nd_init(void) {}
#endif
#ifdef CONFIG_BOARD_MERAKI_MR18
static int mr18_extract_sgmii_res_cal(void)
{
unsigned int base;
unsigned int reversed_sgmii_value;
unsigned int otp_value, otp_per_val, rbias_per, read_data;
unsigned int rbias_pos_or_neg;
unsigned int sgmii_res_cal_value;
int res_cal_val;
base = KSEG1ADDR(QCA955X_OTP_BASE);
WRITEREG(base + QCA955X_OTP_REG_INTF2, 0x7d);
WRITEREG(base + QCA955X_OTP_REG_LDO_CTRL, 0x00);
while (READREG(base + QCA955X_OTP_REG_LDO_STATUS) &
QCA955X_OTP_LDO_STATUS_POWER_ON)
;
READREG(base + QCA955X_OTP_REG_MEM_0 + 4);
while (!(READREG(base + QCA955X_OTP_REG_STATUS0) &
QCA955X_OTP_STATUS0_EFUSE_VALID))
;
read_data = READREG(base + QCA955X_OTP_REG_STATUS1);
if (!(read_data & 0x1fff))
return 0;
if (read_data & 0x00001000)
otp_value = (read_data & 0xfc0) >> 6;
else
otp_value = read_data & 0x3f;
if (otp_value > 31) {
otp_per_val = 63 - otp_value;
rbias_pos_or_neg = 1;
} else {
otp_per_val = otp_value;
rbias_pos_or_neg = 0;
}
rbias_per = otp_per_val * 15;
if (rbias_pos_or_neg == 1)
res_cal_val = (rbias_per + 34) / 21;
else if (rbias_per > 34)
res_cal_val = -((rbias_per - 34) / 21);
else
res_cal_val = (34 - rbias_per) / 21;
sgmii_res_cal_value = (8 + res_cal_val) & 0xf;
reversed_sgmii_value = (sgmii_res_cal_value & 8) >> 3;
reversed_sgmii_value |= (sgmii_res_cal_value & 4) >> 1;
reversed_sgmii_value |= (sgmii_res_cal_value & 2) << 1;
reversed_sgmii_value |= (sgmii_res_cal_value & 1) << 3;
printf("SGMII cal value = 0x%x\n", reversed_sgmii_value);
return reversed_sgmii_value;
}
#define QCA955X_SGMII_SERDES_RES_CALIBRATION BIT(23)
#define QCA955X_SGMII_SERDES_RES_CALIBRATION_MASK 0xf
#define QCA955X_SGMII_SERDES_RES_CALIBRATION_SHIFT 23
#define QCA955X_SGMII_SERDES_LOCK_DETECT_STATUS BIT(15)
#define QCA955X_PLL_ETH_SGMII_SERDES_LOCK_DETECT BIT(2)
#define QCA955X_PLL_ETH_SGMII_SERDES_PLL_REFCLK BIT(1)
#define QCA955X_PLL_ETH_SGMII_SERDES_EN_PLL BIT(0)
#define QCA955X_PLL_CLK_CTRL_REG 0x08
#define QCA955X_PLL_ETH_XMII_CONTROL_REG 0x28
#define QCA955X_PLL_ETH_SGMII_CONTROL_REG 0x48
#define QCA955X_PLL_ETH_SGMII_SERDES_REG 0x4c
static void qca955x_device_reset_clear(unsigned int mask)
{
unsigned int t, reg;
reg = KSEG1ADDR(AR71XX_RESET_BASE +
QCA955X_RESET_REG_RESET_MODULE);
t = READREG(reg);
WRITEREG(reg, t & ~mask);
}
static void mr18_setup_qca955x_eth_serdes_cal(unsigned int sgmii_value)
{
unsigned int ethbase, pllbase, t;
ethbase = KSEG1ADDR(QCA955X_GMAC_BASE);
pllbase = KSEG1ADDR(AR71XX_PLL_BASE);
/* To Check the locking of the SGMII PLL */
t = READREG(ethbase + QCA955X_GMAC_REG_SGMII_SERDES);
t &= ~(QCA955X_SGMII_SERDES_RES_CALIBRATION_MASK <<
QCA955X_SGMII_SERDES_RES_CALIBRATION_SHIFT);
t |= (sgmii_value & QCA955X_SGMII_SERDES_RES_CALIBRATION_MASK) <<
QCA955X_SGMII_SERDES_RES_CALIBRATION_SHIFT;
WRITEREG(ethbase + QCA955X_GMAC_REG_SGMII_SERDES, t);
WRITEREG(pllbase + QCA955X_PLL_ETH_SGMII_SERDES_REG,
QCA955X_PLL_ETH_SGMII_SERDES_LOCK_DETECT |
QCA955X_PLL_ETH_SGMII_SERDES_PLL_REFCLK |
QCA955X_PLL_ETH_SGMII_SERDES_EN_PLL)
;
qca955x_device_reset_clear(QCA955X_RESET_SGMII_ANALOG);
qca955x_device_reset_clear(QCA955X_RESET_SGMII);
while (!(READREG(ethbase + QCA955X_GMAC_REG_SGMII_SERDES) &
QCA955X_SGMII_SERDES_LOCK_DETECT_STATUS))
;
}
static inline void mr18_init(void)
{
int res;
printf("Meraki MR18\n");
res = mr18_extract_sgmii_res_cal();
if (res >= 0)
mr18_setup_qca955x_eth_serdes_cal(res);
}
#else
static inline void mr18_init(void) { }
#endif
#if defined(CONFIG_BOARD_HUAWEI_AP5030DN) || defined(CONFIG_BOARD_HUAWEI_AP6010DN)
static inline void huawei_ap_init(void)
{
const unsigned int watchdog_gpio = 15;
unsigned int gpiobase, reg;
gpiobase = KSEG1ADDR(AR71XX_GPIO_BASE);
printf("Huawei AP\n");
reg = READREG(gpiobase + AR71XX_GPIO_REG_OE);
WRITEREG(gpiobase + AR71XX_GPIO_REG_OE,
reg & ~(1 << watchdog_gpio));
/* Set GPIO15 MUX to output CLK_OBS5 (= CPU_CLK/4)
* or CLK_OBS4 (= AHB_CLK/2) to keep the watchdog happy
* until wdt-gpio takes over
*/
reg = READREG(gpiobase + AR934X_GPIO_REG_OUT_FUNC3);
#if defined(CONFIG_BOARD_HUAWEI_AP5030DN)
WRITEREG(gpiobase + AR934X_GPIO_REG_OUT_FUNC3,
reg | (QCA955X_GPIO_OUTSEL_CLK_OBS5 << 24));
#else if defined(CONFIG_BOARD_HUAWEI_AP6010DN)
WRITEREG(gpiobase + AR934X_GPIO_REG_OUT_FUNC3,
reg | (AR934X_GPIO_OUTSEL_CLK_OBS4 << 24));
#endif
}
#else
static inline void huawei_ap_init(void) {}
#endif
#if defined(CONFIG_BOARD_NEC_WG600HP) || \
defined(CONFIG_BOARD_NEC_WR8750N) || \
defined(CONFIG_BOARD_NEC_WR9500N)
#define AR934X_PLL_SWITCH_CLK_CTRL_REG 0x24
#define AR934X_PLL_SWITCH_CLK_CTRL_SWITCHCLK_SEL BIT(0)
static inline void nec_aterm_init(void)
{
unsigned int reg, val;
printf("NEC Aterm series (AR9344)\n");
/* set REFCLK=40MHz to switch PLL */
reg = KSEG1ADDR(AR71XX_PLL_BASE);
val = READREG(reg + AR934X_PLL_SWITCH_CLK_CTRL_REG);
val &= ~AR934X_PLL_SWITCH_CLK_CTRL_SWITCHCLK_SEL;
WRITEREG(reg + AR934X_PLL_SWITCH_CLK_CTRL_REG, val);
reg = KSEG1ADDR(AR71XX_RESET_BASE);
#ifndef LOADADDR
/*
* This is for initramfs-factory image.
* When the system was reset by power source or FULL_CHIP_RESET
* and started from the OEM bootloader with a dummy tp data
* (this loader), reset again by timeout of the watchdog timer
* to load an actual OpenWrt initramfs image in firmware block
* in a factory image.
* Note: On the stock firmware, TP block contains a POST function
* and sub commands of "tp" command.
*
* Behaviors of OEM bootloader:
*
* - reset by watchdog (ex.: rebooting on the stock firmware):
* called as "SOFT-RESET", boot a firmware without POST
*
* - reset by FULL_CHIP_RESET (or powering on):
* called as "HARD-RESET", run POST and boot a firmware
*/
printf("\n## booted with dummy tp (lzma-loader),"
" waiting reset... (count: 0x%08x) ##\n",
READREG(reg + AR71XX_RESET_REG_WDOG));
while (1);
#endif
/*
* set maximum watchdog count to avoid reset while
* booting from stock bootloader
*/
WRITEREG(reg + AR71XX_RESET_REG_WDOG, 0xffffffff);
/*
* deassert some RESET bits not handled by drivers
* and mainline U-Boot
*
* - ETH_SWITCH(_ANALOG): eth0
* - RTC : wmac
*/
val = READREG(reg + AR934X_RESET_REG_RESET_MODULE);
val &= ~(AR934X_RESET_ETH_SWITCH | AR934X_RESET_ETH_SWITCH_ANALOG |
AR934X_RESET_RTC);
WRITEREG(reg + AR934X_RESET_REG_RESET_MODULE, val);
}
#else
static inline void nec_aterm_init(void) {}
#endif
void board_init(void)
{
tlwr1043nd_init();
mr18_init();
huawei_ap_init();
nec_aterm_init();
}