xiaoyu/media/samples/example/test/sample_demo_vi_venc_stresstest.c

2686 lines
84 KiB
C
Raw Permalink Normal View History

2025-03-04 22:36:42 +08:00
/*
* Copyright 2023 Rockchip Electronics Co. LTD
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifdef __cplusplus
#if __cplusplus
extern "C" {
#endif
#endif /* End of #ifdef __cplusplus */
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/prctl.h>
#include <time.h>
#include <unistd.h>
#include "rtsp_demo.h"
#include "sample_comm.h"
#define BUFFER_SIZE 255
#define RGN_CHN_MAX 7
#define VI_CHN_MAX 3
#define VENC_CHN_MAX 4
#define GET_STREAM_TIMEOUT 2000
#define SEND_STREAM_TIMEOUT 2000
#define TDE_JPEG_CHNID 2
#define COMBO_JPEG_CHNID 3
#define LDCH_MAX_CORRECT_LEVEL 255
#define VI_RGN_NUM 4
#define VENC_RGN_NUM 3
#define RGN_COVER_NUM_FOR_1126 4
#define MEDIA_DEINIT_INIT_TYPE 14
typedef struct _rkModeTest {
RK_BOOL bIfMainThreadQuit;
RK_BOOL bIfVencThreadQuit[VENC_CHN_MAX];
RK_BOOL bIfViThreadQuit;
RK_BOOL bIfModuleTestThreadQuit;
RK_BOOL bIfIvsDetectThreadQuit;
RK_BOOL bIfViIvaTHreadQuit;
RK_BOOL bIfModuleTestopen;
RK_BOOL bIfWrapEnable;
RK_BOOL bMultictx;
RK_S32 s32CamId;
RK_S32 s32ModuleTestType;
RK_U32 u32ModuleTestLoop;
RK_U32 u32TestFrameCount;
RK_U32 u32VencGetFrameCount[VENC_CHN_MAX];
RK_CHAR *inputBmp1Path;
RK_CHAR *inputBmp2Path;
RK_CHAR *pIqFileDir;
rk_aiq_working_mode_t eHdrMode;
CODEC_TYPE_E enCodecType;
pthread_t ivs_detect_thread_id;
pthread_t vi_venc_thread_id;
pthread_t vi_iva_thread_id;
} g_mode_test;
typedef struct _rkMpiCtx {
SAMPLE_VI_CTX_S vi[VI_CHN_MAX];
SAMPLE_VENC_CTX_S venc[VENC_CHN_MAX];
SAMPLE_RGN_CTX_S rgn[RGN_CHN_MAX];
SAMPLE_TDE_CTX_S tde;
SAMPLE_IVS_CTX_S ivs;
#ifdef ROCKIVA
SAMPLE_IVA_CTX_S iva;
#endif
} SAMPLE_MPI_CTX_S;
/* global param */
g_mode_test *gModeTest;
SAMPLE_MPI_CTX_S *ctx;
RK_S32 g_exit_result = RK_SUCCESS;
sem_t g_sem_module_test[VENC_CHN_MAX];
pthread_mutex_t g_rtsp_mutex = {0};
pthread_mutex_t g_frame_count_mutex[VENC_CHN_MAX];
RK_BOOL g_rtsp_ifenbale = RK_FALSE;
rtsp_demo_handle g_rtsplive = RK_NULL;
static rtsp_session_handle g_rtsp_session[VENC_CHN_MAX] = {0};
static void program_handle_error(const char *func, RK_U32 line) {
RK_LOGE("func: <%s> line: <%d> error exit!", func, line);
g_exit_result = RK_FAILURE;
gModeTest->bIfMainThreadQuit = RK_TRUE;
}
static void program_normal_exit(const char *func, RK_U32 line) {
RK_LOGE("func: <%s> line: <%d> normal exit!", func, line);
gModeTest->bIfMainThreadQuit = RK_TRUE;
}
static void sigterm_handler(int sig) {
fprintf(stderr, "signal %d\n", sig);
program_normal_exit(__func__, __LINE__);
}
static RK_CHAR optstr[] = "?::a::w:h:o:l:m:e:r:f:t:i:I:p:v:c:d:s:";
static const struct option long_options[] = {
{"aiq", optional_argument, RK_NULL, 'a'},
{"width", required_argument, RK_NULL, 'w'},
{"height", required_argument, RK_NULL, 'h'},
{"output_path", required_argument, RK_NULL, 'o'},
{"loop_count", required_argument, RK_NULL, 'l'},
{"mode_test_type", required_argument, RK_NULL, 'm'},
{"encode", required_argument, RK_NULL, 'e'},
{"wrap", required_argument, RK_NULL, 'r'},
{"fps", required_argument, RK_NULL, 'f'},
{"inputBmp1Path", required_argument, RK_NULL, 'i'},
{"inputBmp2Path", required_argument, RK_NULL, 'I'},
{"smartP", required_argument, RK_NULL, 'p'},
{"vi_buff_cnt", required_argument, RK_NULL, 'v'},
{"mode_test_loop", required_argument, RK_NULL, 't' + 'l'},
{"test_frame_count", required_argument, RK_NULL, 'c'},
{"iva_detect_speed", required_argument, RK_NULL, 'd'},
{"venc_buff_size", required_argument, RK_NULL, 'v' + 's'},
{"wrap_lines", required_argument, RK_NULL, 'w' + 'l'},
{"iva_model_path", required_argument, RK_NULL, 'i' + 'm'},
{"vi_chnid", required_argument, RK_NULL, 'v' + 'i'},
{"help", optional_argument, RK_NULL, '?'},
{RK_NULL, 0, RK_NULL, 0},
};
/******************************************************************************
* function : show usage
******************************************************************************/
static void print_usage(const RK_CHAR *name) {
printf("usage example:\n");
printf("\t%s -w 1920 -h 1080 -a /etc/iqfiles/ -l -1 \n", name);
#ifdef RKAIQ
printf(
"\t-a | --aiq : enable aiq with dirpath provided, eg:-a /etc/iqfiles/, \n"
"\t set dirpath empty to using path by default, without this option aiq \n"
"\t should run in other application\n");
#endif
printf("\t-w | --width : mainStream width, Default: 1920\n");
printf("\t-h | --height : mainStream height, Default: 1080\n");
printf("\t-o | --output_path : encode output file path, Default: RK_NULL\n");
printf("\t-l | --loop_count : when encoder output frameCounts equal to <loop_count>, "
"process will exit. Default: -1\n");
printf(
"\t-m | --mode_test_type : test type, 0:none, 1: pn_mode_test 2: hdr_mode_test \n"
" \t 3: framerate_switch_test, 4: ldch_mode_test, 5: "
"encode_resolution_switch, 6: encode_type_switch\n"
"\t 7: smartP_mode_test, 8: SVC_mode_test, 9: motion_deblur_test, 10: "
"force_idr_test, 11: venc_chn_rotation_test, \n"
"\t 12: rgn_attach_and_detach, 13: "
"encode_resolution_switch_for_rv1126, 14: Media_deinit_and_init. Default: 0\n");
printf(
"\t-e | --encode : set encode type, Value: h264cbr, h264vbr, h264avbr, h265cbr, "
"h265vbr, h265avbr, default: h264cbr \n");
printf("\t-r | --wrap : wrap for mainStream, 0: close 1: open, Default: 0\n");
printf("\t-i | --inputBmp1Path : input bmp file path. default: RK_NULL\n");
printf("\t-I | --inputBmp2Path : input bmp file path. default: RK_NULL\n");
printf("\t-p | --smartP : smartp mode for mainStream, 0: Disable 1: Enable. Default: "
"0\n");
printf("\t-v | --vi_buff_cnt : main stream vi buffer num, Default: 2\n");
printf("\t--mode_test_loop : module test loop, default: -1\n");
printf("\t--test_frame_count : when encoder outputs frameCount equal to "
"<test_frame_count>, mode_test start next loop, default: 500\n");
printf("\t--iva_detect_speed : iva detect framerate. default: 10\n");
printf("\t--venc_buff_size : main stream venc output buffer size. default value is "
"vencWidth*vencHeigth/2(byte)\n");
printf("\t--wrap_lines : 0: height/2, 1: height/4, 2: height/8. default: 1\n");
printf("\t--iva_model_path : iva model data path, default: /oem/usr/lib\n");
#ifdef RV1126
printf("\t--vi_chnid : vi_0 channel id, default: 1\n");
#endif
}
static void vi_venc_thread_error_handle(const char *func, RK_U32 line, MB_BLK mb,
RK_BOOL ifrelease) {
if (mb && ifrelease) {
SAMPLE_COMM_TDE_ReleaseMB(&ctx->tde);
}
RK_MPI_VI_ReleaseChnFrame(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId,
&ctx->vi[0].stViFrame);
if (gModeTest->s32ModuleTestType == MEDIA_DEINIT_INIT_TYPE) {
return;
}
if (gModeTest->bIfMainThreadQuit) {
program_normal_exit(func, line);
} else {
program_handle_error(func, line);
}
}
/* vi get stream send tde and tde send venc*/
static void *vi_venc_thread(void *pArgs) {
prctl(PR_SET_NAME, "vi_venc_thread");
RK_S32 s32Ret = RK_FAILURE;
RK_LOGE("into vi_venc_thread------------------------------------");
while (!gModeTest->bIfViThreadQuit) {
s32Ret = RK_MPI_VI_GetChnFrame(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId,
&ctx->vi[0].stViFrame, GET_STREAM_TIMEOUT);
if (s32Ret == RK_SUCCESS) {
s32Ret = SAMPLE_COMM_TDE_GetMB(&ctx->tde);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_TDE_GetMB failure");
vi_venc_thread_error_handle(__func__, __LINE__, RK_NULL, RK_FALSE);
continue;
}
s32Ret = SAMPLE_COMM_TDE_Handle(&ctx->tde, &ctx->vi[0].stViFrame.stVFrame);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_TDE_Handle failure:%X", s32Ret);
vi_venc_thread_error_handle(
__func__, __LINE__, ctx->tde.stVideoFrames.stVFrame.pMbBlk, RK_TRUE);
continue;
}
s32Ret = RK_MPI_VENC_SendFrame(ctx->venc[2].s32ChnId, &ctx->tde.stVideoFrames,
SEND_STREAM_TIMEOUT);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VENC_SendFrame Failure:%X chnid:%d", s32Ret,
ctx->venc[2].s32ChnId);
vi_venc_thread_error_handle(
__func__, __LINE__, ctx->tde.stVideoFrames.stVFrame.pMbBlk, RK_TRUE);
continue;
}
s32Ret = SAMPLE_COMM_TDE_ReleaseMB(&ctx->tde);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_TDE_ReleaseMB failure:%X", s32Ret);
RK_MPI_VI_ReleaseChnFrame(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId,
&ctx->vi[0].stViFrame);
program_handle_error(__func__, __LINE__);
continue;
}
s32Ret = RK_MPI_VI_ReleaseChnFrame(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId,
&ctx->vi[0].stViFrame);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_ReleaseChnFrame failure:%X pipe:%d chnid:%d", s32Ret,
ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
program_handle_error(__func__, __LINE__);
continue;
}
} else {
RK_LOGE("RK_MPI_VI_GetChnFrame Failure:%X pipe:%d chnid:%d", s32Ret,
ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
}
}
RK_LOGE("vi %d get stream exit", ctx->vi[0].s32ChnId);
return RK_NULL;
}
static void *venc_get_stream(void *pArgs) {
SAMPLE_VENC_CTX_S *ctx = (SAMPLE_VENC_CTX_S *)pArgs;
RK_S32 s32Ret = RK_FAILURE;
FILE *fp = RK_NULL;
RK_S32 s32fd = 0;
RK_S32 loopCount = 0;
RK_VOID *pData = RK_NULL;
RK_CHAR name[BUFFER_SIZE] = {0};
sprintf(name, "venc_%d_get_stream", ctx->s32ChnId);
prctl(PR_SET_NAME, name);
if (ctx->dstFilePath) {
memset(name, 0, BUFFER_SIZE);
if (ctx->s32ChnId == TDE_JPEG_CHNID || ctx->s32ChnId == COMBO_JPEG_CHNID) {
snprintf(name, sizeof(name), "/%s/venc_%d.jpeg", ctx->dstFilePath,
ctx->s32ChnId);
} else {
snprintf(name, sizeof(name), "/%s/venc_%d.bin", ctx->dstFilePath,
ctx->s32ChnId);
}
fp = fopen(name, "wb");
if (fp == RK_NULL) {
RK_LOGE("chn %d can't open %s file !\n", ctx->s32ChnId, ctx->dstFilePath);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
s32fd = fileno(fp);
}
while (!gModeTest->bIfVencThreadQuit[ctx->s32ChnId]) {
s32Ret = SAMPLE_COMM_VENC_GetStream(ctx, &pData);
if (s32Ret == RK_SUCCESS) {
if (ctx->s32loopCount > 0) {
if (loopCount >= ctx->s32loopCount) {
SAMPLE_COMM_VENC_ReleaseStream(ctx);
program_normal_exit(__func__, __LINE__);
break;
}
}
if (fp && !gModeTest->bIfMainThreadQuit) {
if (ctx->s32ChnId == TDE_JPEG_CHNID ||
ctx->s32ChnId == COMBO_JPEG_CHNID) {
fseek(fp, 0, SEEK_SET);
}
fwrite(pData, 1, ctx->stFrame.pstPack->u32Len, fp);
fflush(fp);
}
if (g_rtsp_ifenbale && ctx->s32ChnId != TDE_JPEG_CHNID &&
ctx->s32ChnId != COMBO_JPEG_CHNID) {
pthread_mutex_lock(&g_rtsp_mutex);
rtsp_tx_video(g_rtsp_session[ctx->s32ChnId], pData,
ctx->stFrame.pstPack->u32Len, ctx->stFrame.pstPack->u64PTS);
rtsp_do_event(g_rtsplive);
pthread_mutex_unlock(&g_rtsp_mutex);
} else {
RK_LOGD("venc %d get_stream count: %d", ctx->s32ChnId, loopCount);
}
if (gModeTest->bIfModuleTestopen) {
pthread_mutex_lock(&g_frame_count_mutex[ctx->s32ChnId]);
gModeTest->u32VencGetFrameCount[ctx->s32ChnId]++;
pthread_mutex_unlock(&g_frame_count_mutex[ctx->s32ChnId]);
if (gModeTest->u32VencGetFrameCount[ctx->s32ChnId] ==
gModeTest->u32TestFrameCount) {
sem_post(&g_sem_module_test[ctx->s32ChnId]);
}
}
RK_LOGD("venc %d get_stream count: %d", ctx->s32ChnId, loopCount);
SAMPLE_COMM_VENC_ReleaseStream(ctx);
loopCount++;
}
}
if (fp) {
fsync(s32fd);
fclose(fp);
fp = RK_NULL;
}
RK_LOGE("venc_get_stream chnid:%d exit", ctx->s32ChnId);
return RK_NULL;
}
#ifdef ROCKIVA
static void rkIvaEvent_callback(const RockIvaBaResult *result,
const RockIvaExecuteStatus status, void *userData) {
if (result->objNum == 0)
return;
for (int i = 0; i < result->objNum; i++) {
RK_LOGD("topLeft:[%d,%d], bottomRight:[%d,%d],"
"objId is %d, frameId is %d, score is %d, type is %d\n",
result->triggerObjects[i].objInfo.rect.topLeft.x,
result->triggerObjects[i].objInfo.rect.topLeft.y,
result->triggerObjects[i].objInfo.rect.bottomRight.x,
result->triggerObjects[i].objInfo.rect.bottomRight.y,
result->triggerObjects[i].objInfo.objId,
result->triggerObjects[i].objInfo.frameId,
result->triggerObjects[i].objInfo.score,
result->triggerObjects[i].objInfo.type);
}
}
static void rkIvaFrame_releaseCallBack(const RockIvaReleaseFrames *releaseFrames,
void *userdata) {
/* when iva handle out of the video framethis func will be called*/
RK_S32 s32Ret = RK_SUCCESS;
for (RK_S32 i = 0; i < releaseFrames->count; i++) {
if (!releaseFrames->frames[i].extData) {
RK_LOGE("---------error release frame is null");
program_handle_error(__func__, __LINE__);
continue;
}
s32Ret = RK_MPI_VI_ReleaseChnFrame(0, 2, releaseFrames->frames[i].extData);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_ReleaseChnFrame failure:%#X", s32Ret);
program_handle_error(__func__, __LINE__);
}
free(releaseFrames->frames[i].extData);
}
}
static void *vi_iva_thread(void *pArgs) {
prctl(PR_SET_NAME, "vi_iva_thread");
RK_S32 s32Ret = RK_FAILURE;
RK_CHAR *pData = RK_NULL;
RK_S32 s32Fd = 0;
RockIvaImage ivaImage;
RK_U32 u32Loopcount = 0;
RK_U32 u32GetOneFrameTime = 1000 / ctx->iva.u32IvaDetectFrameRate;
VIDEO_FRAME_INFO_S *stViFrame = NULL;
while (!gModeTest->bIfViIvaTHreadQuit) {
s32Ret = SAMPLE_COMM_VI_GetChnFrame(&ctx->vi[2], (void **)&pData);
if (s32Ret == RK_SUCCESS) {
stViFrame = (VIDEO_FRAME_INFO_S *)malloc(sizeof(VIDEO_FRAME_INFO_S));
if (!stViFrame) {
RK_LOGE("-----error malloc fail for stViFrame");
SAMPLE_COMM_VI_ReleaseChnFrame(&ctx->vi[2]);
continue;
}
memcpy(stViFrame, &ctx->vi[2].stViFrame, sizeof(VIDEO_FRAME_INFO_S));
s32Fd = RK_MPI_MB_Handle2Fd(stViFrame->stVFrame.pMbBlk);
memset(&ivaImage, 0, sizeof(RockIvaImage));
ivaImage.info.transformMode = ctx->iva.eImageTransform;
ivaImage.info.width = stViFrame->stVFrame.u32Width;
ivaImage.info.height = stViFrame->stVFrame.u32Height;
ivaImage.info.format = ctx->iva.eImageFormat;
ivaImage.frameId = u32Loopcount;
ivaImage.dataAddr = NULL;
ivaImage.dataPhyAddr = NULL;
ivaImage.dataFd = s32Fd;
ivaImage.extData = stViFrame;
s32Ret = ROCKIVA_PushFrame(ctx->iva.ivahandle, &ivaImage, NULL);
u32Loopcount++;
}
usleep(u32GetOneFrameTime * 1000);
}
RK_LOGE("vi_iva_thread exit !!!");
return RK_NULL;
}
#endif
static void *ivs_detect_thread(void *pArgs) {
prctl(PR_SET_NAME, "ivs_detect_thread");
RK_S32 s32Ret = RK_FAILURE;
IVS_RESULT_INFO_S stResults;
RK_U32 u32IvsDetectCount = 0;
IVS_CHN_ATTR_S pstAttr;
memset(&pstAttr, 0, sizeof(IVS_CHN_ATTR_S));
RK_MPI_IVS_GetChnAttr(0, &pstAttr);
RK_LOGE("odIfEnable:%d ", pstAttr.bODEnable);
while (!gModeTest->bIfIvsDetectThreadQuit) {
memset(&stResults, 0, sizeof(IVS_RESULT_INFO_S));
s32Ret = RK_MPI_IVS_GetResults(0, &stResults, GET_STREAM_TIMEOUT);
if (s32Ret == RK_SUCCESS) {
u32IvsDetectCount++;
// RK_LOGD("s32ReNum: %d", stResults.s32ResultNum);
if (stResults.s32ResultNum == 1) {
for (int i = 0; i < stResults.pstResults->stMdInfo.u32RectNum; i++) {
printf("%d: [%d, %d, %d, %d]\n", i,
stResults.pstResults->stMdInfo.stRect[i].s32X,
stResults.pstResults->stMdInfo.stRect[i].s32Y,
stResults.pstResults->stMdInfo.stRect[i].u32Width,
stResults.pstResults->stMdInfo.stRect[i].u32Height);
}
}
if (stResults.s32ResultNum > 0) {
if (stResults.pstResults->stOdInfo.u32Flag) {
RK_LOGE("OD flag:%d\n", stResults.pstResults->stOdInfo.u32Flag);
}
}
RK_MPI_IVS_ReleaseResults(0, &stResults);
} else {
RK_LOGE("RK_MPI_IVS_GetResults failure:%X", s32Ret);
}
}
RK_LOGE("ivs_detect_thread exit");
return RK_NULL;
}
static RK_S32 pnMode_stressTest(RK_S32 s32CamId, rk_aiq_working_mode_t WDRMode,
RK_BOOL MultiCam, const char *iq_file_dir) {
RK_S32 s32Ret = RK_FAILURE;
RK_MPI_VI_PauseChn(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
RK_MPI_VI_PauseChn(ctx->vi[1].u32PipeId, ctx->vi[1].s32ChnId);
RK_MPI_VI_PauseChn(ctx->vi[2].u32PipeId, ctx->vi[2].s32ChnId);
SAMPLE_COMM_ISP_Stop(s32CamId);
s32Ret = SAMPLE_COMM_ISP_Init(s32CamId, WDRMode, MultiCam, iq_file_dir);
s32Ret |= SAMPLE_COMM_ISP_Run(s32CamId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_ISP_Init_Run failure\n");
return s32Ret;
}
RK_MPI_VI_ResumeChn(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
RK_MPI_VI_ResumeChn(ctx->vi[1].u32PipeId, ctx->vi[1].s32ChnId);
RK_MPI_VI_ResumeChn(ctx->vi[2].u32PipeId, ctx->vi[2].s32ChnId);
RK_LOGE("-----------------PN mode switch success");
return RK_SUCCESS;
}
static RK_S32 hdrMode_stressTest(RK_S32 s32CamId, rk_aiq_working_mode_t WDRMode,
RK_BOOL MultiCam, const char *iq_file_dir) {
RK_S32 s32Ret = RK_FAILURE;
static rk_aiq_working_mode_t eNowHdrMode = RK_AIQ_WORKING_MODE_NORMAL;
RK_MPI_VI_PauseChn(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
RK_MPI_VI_PauseChn(ctx->vi[1].u32PipeId, ctx->vi[1].s32ChnId);
RK_MPI_VI_PauseChn(ctx->vi[2].u32PipeId, ctx->vi[2].s32ChnId);
SAMPLE_COMM_ISP_Stop(s32CamId);
if (eNowHdrMode == RK_AIQ_WORKING_MODE_NORMAL) {
eNowHdrMode = RK_AIQ_WORKING_MODE_ISP_HDR2;
} else if (eNowHdrMode == RK_AIQ_WORKING_MODE_ISP_HDR2) {
eNowHdrMode = RK_AIQ_WORKING_MODE_NORMAL;
} else {
eNowHdrMode = RK_AIQ_WORKING_MODE_NORMAL;
}
s32Ret = SAMPLE_COMM_ISP_Init(s32CamId, eNowHdrMode, MultiCam, iq_file_dir);
s32Ret |= SAMPLE_COMM_ISP_Run(s32CamId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("ISP init failure\n");
return s32Ret;
}
RK_MPI_VI_ResumeChn(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
RK_MPI_VI_ResumeChn(ctx->vi[1].u32PipeId, ctx->vi[1].s32ChnId);
RK_MPI_VI_ResumeChn(ctx->vi[2].u32PipeId, ctx->vi[2].s32ChnId);
RK_LOGE("------------switch to %d(normal:0 HDR2:16)", eNowHdrMode);
return RK_SUCCESS;
}
static RK_S32 frameRate_switchTest(SAMPLE_VI_CTX_S *ctx) {
RK_S32 s32Ret = RK_FAILURE;
VI_CHN_ATTR_S pstChnAttr;
memset(&pstChnAttr, 0, sizeof(VI_CHN_ATTR_S));
s32Ret = RK_MPI_VI_GetChnAttr(ctx->u32PipeId, ctx->s32ChnId, &pstChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_GetChnAttr failure:%X", s32Ret);
return s32Ret;
}
srand(time(NULL));
pstChnAttr.stFrameRate.s32DstFrameRate = rand() % 25 + 1;
pstChnAttr.stFrameRate.s32SrcFrameRate = 25;
s32Ret = RK_MPI_VI_SetChnAttr(ctx->u32PipeId, ctx->s32ChnId, &pstChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_GetChnAttr failure:%X", s32Ret);
return s32Ret;
}
RK_LOGE("---------------Framerate switch to: %d",
pstChnAttr.stFrameRate.s32DstFrameRate);
return RK_SUCCESS;
}
static RK_S32 ldchMode_test(RK_S32 s32CamId) {
RK_S32 s32Ret = RK_FAILURE;
static RK_U32 u32LdchLevel = 1;
static RK_BOOL bIfLDCHEnable = RK_TRUE;
s32Ret = SAMPLE_COMM_ISP_SetLDCH(s32CamId, u32LdchLevel, bIfLDCHEnable);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_ISP_SetLDCH failure");
return s32Ret;
}
if (bIfLDCHEnable) {
u32LdchLevel++;
if (u32LdchLevel > LDCH_MAX_CORRECT_LEVEL) {
u32LdchLevel = 0;
}
}
bIfLDCHEnable = !bIfLDCHEnable;
RK_LOGE("-----------------LDCH state: %d(0:close 1:open) level:%d", bIfLDCHEnable,
u32LdchLevel);
return RK_SUCCESS;
}
static RK_S32 venc_rgn_detach(void) {
RK_S32 s32Ret = RK_FAILURE;
for (RK_S32 i = 0; i < VENC_RGN_NUM; i++) {
s32Ret = RK_MPI_RGN_DetachFromChn(ctx->rgn[i + VI_RGN_NUM].rgnHandle,
&ctx->rgn[i + VI_RGN_NUM].stMppChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_RGN_DetachFromChn handle:%d failure:%#X",
ctx->rgn[i + VI_RGN_NUM].rgnHandle, s32Ret);
return s32Ret;
}
}
return s32Ret;
}
static RK_S32 venc_rgn_attach(void) {
RK_S32 s32Ret = RK_FAILURE;
for (RK_S32 i = 0; i < VENC_RGN_NUM; i++) {
s32Ret = RK_MPI_RGN_AttachToChn(ctx->rgn[i + VI_RGN_NUM].rgnHandle,
&ctx->rgn[i + VI_RGN_NUM].stMppChn,
&ctx->rgn[i + VI_RGN_NUM].stRgnChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_RGN_AttachToChn handle:%d failure:%#X",
ctx->rgn[i + VI_RGN_NUM].rgnHandle, s32Ret);
return s32Ret;
}
}
return s32Ret;
}
static RK_S32 vencResolution_switchTest(SAMPLE_TDE_CTX_S *pTdeCtx,
SAMPLE_VENC_CTX_S *pVencCtx,
SAMPLE_VI_CTX_S *pViCtx,
SAMPLE_VENC_CTX_S *pComboVencCtx) {
RK_S32 s32Ret = RK_FAILURE;
RK_U32 u32DstWidth = 704;
RK_U32 u32DstHeight = 576;
VENC_CHN_ATTR_S pstChnAttr;
VENC_CHN_ATTR_S pstComboChnAttr;
VI_CHN_ATTR_S vipstChnAttr;
MPP_CHN_S stSrcChn, stDestChn;
/* rgn detach */
s32Ret = venc_rgn_detach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_detach failure");
return s32Ret;
}
// unBind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d unband to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
memset(&pstChnAttr, 0, sizeof(VENC_CHN_ATTR_S));
memset(&pstComboChnAttr, 0, sizeof(VENC_CHN_ATTR_S));
s32Ret = RK_MPI_VENC_GetChnAttr(pVencCtx->s32ChnId, &pstChnAttr);
s32Ret |= RK_MPI_VENC_GetChnAttr(pComboVencCtx->s32ChnId, &pstComboChnAttr);
RK_LOGD("w: %d h: %d", pstChnAttr.stVencAttr.u32PicWidth,
pstChnAttr.stVencAttr.u32PicHeight);
if (pstChnAttr.stVencAttr.u32PicWidth == pVencCtx->u32Width) {
pstChnAttr.stVencAttr.u32PicWidth = u32DstWidth;
pstChnAttr.stVencAttr.u32PicHeight = u32DstHeight;
pstComboChnAttr.stVencAttr.u32PicWidth = u32DstWidth;
pstComboChnAttr.stVencAttr.u32PicHeight = u32DstHeight;
pstChnAttr.stVencAttr.u32VirWidth = RK_ALIGN_2(u32DstWidth);
pstChnAttr.stVencAttr.u32VirHeight = RK_ALIGN_2(u32DstHeight);
pstComboChnAttr.stVencAttr.u32VirWidth = RK_ALIGN_2(u32DstWidth);
pstComboChnAttr.stVencAttr.u32VirHeight = RK_ALIGN_2(u32DstHeight);
} else {
pstChnAttr.stVencAttr.u32PicWidth = pVencCtx->u32Width;
pstChnAttr.stVencAttr.u32PicHeight = pVencCtx->u32Height;
pstComboChnAttr.stVencAttr.u32PicWidth = pVencCtx->u32Width;
pstComboChnAttr.stVencAttr.u32PicHeight = pVencCtx->u32Height;
pstChnAttr.stVencAttr.u32VirWidth = RK_ALIGN_2(pVencCtx->u32Width);
pstChnAttr.stVencAttr.u32VirHeight = RK_ALIGN_2(pVencCtx->u32Height);
pstComboChnAttr.stVencAttr.u32VirWidth = RK_ALIGN_2(pVencCtx->u32Width);
pstComboChnAttr.stVencAttr.u32VirHeight = RK_ALIGN_2(pVencCtx->u32Height);
}
pTdeCtx->pstSrc.u32Width = pstChnAttr.stVencAttr.u32PicWidth;
pTdeCtx->pstSrc.u32Height = pstChnAttr.stVencAttr.u32PicHeight;
s32Ret |= RK_MPI_VENC_SetChnAttr(pVencCtx->s32ChnId, &pstChnAttr);
s32Ret |= RK_MPI_VENC_SetChnAttr(pComboVencCtx->s32ChnId, &pstComboChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc set chn resolution failure");
return s32Ret;
}
memset(&vipstChnAttr, 0, sizeof(VI_CHN_ATTR_S));
s32Ret = RK_MPI_VI_GetChnAttr(pViCtx->u32PipeId, pViCtx->s32ChnId, &vipstChnAttr);
RK_LOGD("w: %d h: %d", vipstChnAttr.stSize.u32Width, vipstChnAttr.stSize.u32Height);
if (vipstChnAttr.stSize.u32Width == pViCtx->u32Width) {
vipstChnAttr.stSize.u32Width = u32DstWidth;
vipstChnAttr.stSize.u32Height = u32DstHeight;
} else {
vipstChnAttr.stSize.u32Width = pViCtx->u32Width;
vipstChnAttr.stSize.u32Height = pViCtx->u32Height;
}
s32Ret |= RK_MPI_VI_SetChnAttr(pViCtx->u32PipeId, pViCtx->s32ChnId, &vipstChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE(" set resolution failure");
return s32Ret;
}
// Bind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d band to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
/* rgn attach */
s32Ret = venc_rgn_attach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_attach failure");
return s32Ret;
}
RK_LOGE("------------------------Venc resolution switch to %dx%d",
vipstChnAttr.stSize.u32Width, vipstChnAttr.stSize.u32Height);
return RK_SUCCESS;
}
static RK_S32 encode_destroy_and_restart(CODEC_TYPE_E enCodecType,
VENC_RC_MODE_E enRcMode, RK_U32 u32Profile,
RK_BOOL bIfSliceSplit, RK_BOOL *bVencThreadQuit,
SAMPLE_VENC_CTX_S *pVencCtx,
SAMPLE_VI_CTX_S *pViCtx) {
RK_S32 s32Ret = RK_FAILURE;
MPP_CHN_S stSrcChn, stDestChn;
/* rgn detach */
s32Ret = venc_rgn_detach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_detach failure");
return s32Ret;
}
*bVencThreadQuit = RK_TRUE;
if (pVencCtx->getStreamCbFunc) {
pthread_join(pVencCtx->getStreamThread, RK_NULL);
}
// unBind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d unband to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
// Destroy venc
s32Ret = SAMPLE_COMM_VENC_DestroyChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
pVencCtx->enCodecType = enCodecType;
pVencCtx->enRcMode = enRcMode;
pVencCtx->stChnAttr.stVencAttr.u32Profile = u32Profile;
*bVencThreadQuit = RK_FALSE;
// Init VENC
s32Ret = SAMPLE_COMM_VENC_CreateChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
// Bind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d band to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
/* rgn attach */
s32Ret = venc_rgn_attach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_attach failure");
return s32Ret;
}
return s32Ret;
}
static RK_S32 encode_typeSwitch(RK_BOOL *bVencThreadQuit, SAMPLE_VENC_CTX_S *pVencCtx,
SAMPLE_VI_CTX_S *pViCtx) {
RK_S32 s32Ret = RK_FAILURE;
static RK_U32 now_test_loop = 0;
switch (now_test_loop % 2) {
case 0: /* H264 CBR */
RK_LOGE("---------------------------Switch To H264CBR");
s32Ret = encode_destroy_and_restart(RK_CODEC_TYPE_H264, VENC_RC_MODE_H264CBR, 100,
RK_FALSE, bVencThreadQuit, pVencCtx, pViCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("switch to 264_cbr failure");
return s32Ret;
}
break;
case 1: /* H265 CBR */
RK_LOGE("---------------------------Switch To H265CBR");
s32Ret = encode_destroy_and_restart(RK_CODEC_TYPE_H265, VENC_RC_MODE_H265CBR, 0,
RK_FALSE, bVencThreadQuit, pVencCtx, pViCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("switch to 265_cbr failure");
return s32Ret;
}
break;
default:
break;
}
now_test_loop++;
return RK_SUCCESS;
}
static RK_S32 smartP_switchTest(RK_BOOL *bVencThreadQuit, SAMPLE_VENC_CTX_S *pVencCtx,
SAMPLE_VI_CTX_S *pViCtx) {
RK_S32 s32Ret = RK_FAILURE;
MPP_CHN_S stSrcChn, stDestChn;
static RK_BOOL eSmartpIfEnable = RK_TRUE;
/* rgn detach */
s32Ret = venc_rgn_detach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_detach failure");
return s32Ret;
}
*bVencThreadQuit = RK_TRUE;
if (pVencCtx->getStreamCbFunc) {
pthread_join(pVencCtx->getStreamThread, RK_NULL);
}
// unBind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d unband to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
// Destroy venc
s32Ret = SAMPLE_COMM_VENC_DestroyChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
if (eSmartpIfEnable) {
pVencCtx->stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_SMARTP;
pVencCtx->stChnAttr.stGopAttr.s32VirIdrLen = pVencCtx->u32Gop / 2;
RK_LOGE("------------------GopMode set to VENC_GOPMODE_SMARTP");
} else {
pVencCtx->stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_NORMALP;
RK_LOGE("------------------GopMode set to VENC_GOPMODE_NORMALP");
}
*bVencThreadQuit = RK_FALSE;
eSmartpIfEnable = !eSmartpIfEnable;
// Init VENC
s32Ret = SAMPLE_COMM_VENC_CreateChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
// Bind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d band to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
/* rgn attach */
s32Ret = venc_rgn_attach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_attach failure");
return s32Ret;
}
return RK_SUCCESS;
}
static RK_S32 smartEncode_switchTest(RK_BOOL *bVencThreadQuit,
SAMPLE_VENC_CTX_S *pVencCtx,
SAMPLE_VI_CTX_S *pViCtx) {
RK_S32 s32Ret = RK_FAILURE;
static RK_BOOL eSvcIfEnable = RK_TRUE;
MPP_CHN_S stSrcChn, stDestChn;
/* rgn detach */
s32Ret = venc_rgn_detach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_detach failure");
return s32Ret;
}
*bVencThreadQuit = RK_TRUE;
if (pVencCtx->getStreamCbFunc) {
pthread_join(pVencCtx->getStreamThread, RK_NULL);
}
// unBind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d unband to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
// Destroy venc
s32Ret = SAMPLE_COMM_VENC_DestroyChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
if (eSvcIfEnable) {
pVencCtx->bSvcIfEnable = eSvcIfEnable;
if (pVencCtx->enCodecType == RK_CODEC_TYPE_H265) {
pVencCtx->enRcMode = VENC_RC_MODE_H265VBR;
} else if (pVencCtx->enCodecType == RK_CODEC_TYPE_H264) {
pVencCtx->enRcMode = VENC_RC_MODE_H264VBR;
}
RK_LOGE("---------------------Smart video coding enable");
} else {
pVencCtx->bSvcIfEnable = eSvcIfEnable;
RK_LOGE("---------------------Smart video coding disable");
}
eSvcIfEnable = !eSvcIfEnable;
*bVencThreadQuit = RK_FALSE;
// Init VENC
s32Ret = SAMPLE_COMM_VENC_CreateChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
// Bind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d band to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
/* rgn attach */
s32Ret = venc_rgn_attach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_attach failure");
return s32Ret;
}
return RK_SUCCESS;
}
static RK_S32 motionDeblur_test(RK_BOOL *bVencThreadQuit, SAMPLE_VENC_CTX_S *pVencCtx,
SAMPLE_VI_CTX_S *pViCtx) {
RK_S32 s32Ret = RK_FAILURE;
static RK_BOOL eMotionDeblurIfEnable = RK_TRUE;
MPP_CHN_S stSrcChn, stDestChn;
/* rgn detach */
s32Ret = venc_rgn_detach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_detach failure");
return s32Ret;
}
*bVencThreadQuit = RK_TRUE;
if (pVencCtx->getStreamCbFunc) {
pthread_join(pVencCtx->getStreamThread, RK_NULL);
}
// unBind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d unband to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
// Destroy venc
s32Ret = SAMPLE_COMM_VENC_DestroyChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
if (eMotionDeblurIfEnable) {
pVencCtx->bMotionDeblurIfEnable = eMotionDeblurIfEnable;
RK_LOGE("------------------------------Motion Deblur enable");
} else {
pVencCtx->bMotionDeblurIfEnable = eMotionDeblurIfEnable;
RK_LOGE("------------------------------Motion Deblur disable");
}
eMotionDeblurIfEnable = !eMotionDeblurIfEnable;
*bVencThreadQuit = RK_FALSE;
// Init VENC
s32Ret = SAMPLE_COMM_VENC_CreateChn(pVencCtx);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VENC_DestroyChn 0 Failure s32Ret:%#X", s32Ret);
return s32Ret;
}
// Bind vi and venc
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = pViCtx->s32DevId;
stSrcChn.s32ChnId = pViCtx->s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = pVencCtx->s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vi devid:%d chnid:%d band to venc chnid:%d failure", pViCtx->s32DevId,
pViCtx->s32ChnId, pVencCtx->s32ChnId);
return s32Ret;
}
/* rgn attach */
s32Ret = venc_rgn_attach();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("venc_rgn_attach failure");
return s32Ret;
}
return RK_SUCCESS;
}
static RK_S32 vencForceIdr_test(SAMPLE_VENC_CTX_S *pVencCtx) {
RK_S32 s32Ret = RK_FAILURE;
RK_LOGE("-------------------venc set force idr");
s32Ret = RK_MPI_VENC_RequestIDR(pVencCtx->s32ChnId, RK_FALSE);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VENC_RequestIDR failure: %X", s32Ret);
return s32Ret;
}
return RK_SUCCESS;
}
static RK_S32 vencSetRotation_test(SAMPLE_VENC_CTX_S *pVencCtx) {
RK_S32 s32Ret = RK_FAILURE;
ROTATION_E enRotation;
memset(&enRotation, 0, sizeof(ROTATION_E));
s32Ret = RK_MPI_VENC_GetChnRotation(pVencCtx->s32ChnId, &enRotation);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VENC_GetChnRotation failure:%X", s32Ret);
return RK_FAILURE;
}
if (enRotation == ROTATION_0) {
enRotation = ROTATION_90;
} else if (enRotation == ROTATION_90) {
enRotation = ROTATION_180;
} else if (enRotation == ROTATION_180) {
enRotation = ROTATION_270;
} else if (enRotation == ROTATION_270) {
enRotation = ROTATION_0;
} else {
enRotation = ROTATION_0;
}
s32Ret = RK_MPI_VENC_SetChnRotation(pVencCtx->s32ChnId, enRotation);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VENC_SetChnRotation failure:%X", s32Ret);
return RK_FAILURE;
}
RK_LOGE("--------------ChnRotation switch to %d (0->0, 1->90, 2->180, 3->270)",
enRotation);
return RK_SUCCESS;
}
static RK_S32 rgn_init(void) {
RK_S32 s32Ret = RK_FAILURE;
RK_U32 u32Width = 0;
RK_U32 u32Height = 0;
#if defined(RV1106)
/* cover for vi[0]*/
ctx->rgn[0].rgnHandle = 0;
ctx->rgn[0].stRgnAttr.enType = COVER_RGN;
ctx->rgn[0].stMppChn.enModId = RK_ID_VI;
ctx->rgn[0].stMppChn.s32ChnId = VI_MAX_CHN_NUM;
ctx->rgn[0].stMppChn.s32DevId = ctx->vi[0].s32DevId;
ctx->rgn[0].stRegion.s32X = 0; /* must be 2 aligned */
ctx->rgn[0].stRegion.s32Y = 0; /* must be 2 aligned */
ctx->rgn[0].stRegion.u32Width = 256; /* must be 8 aligned */
ctx->rgn[0].stRegion.u32Height = 256; /* must be 8 aligned */
ctx->rgn[0].u32Color = 0xFF0000;
ctx->rgn[0].u32Layer = 0;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[0].rgnHandle);
return s32Ret;
}
/* cover for vi */
ctx->rgn[1].rgnHandle = 1;
ctx->rgn[1].stRgnAttr.enType = COVER_RGN;
ctx->rgn[1].stMppChn.enModId = RK_ID_VI;
ctx->rgn[1].stMppChn.s32ChnId = VI_MAX_CHN_NUM;
ctx->rgn[1].stMppChn.s32DevId = ctx->vi[0].s32DevId;
ctx->rgn[1].stRegion.s32X = 0; /* must be 2 aligned */
ctx->rgn[1].stRegion.s32Y =
RK_ALIGN_2(ctx->vi[0].u32Height - 256); /* must be 2 aligned */
ctx->rgn[1].stRegion.u32Width = 256; /* must be 8 aligned */
ctx->rgn[1].stRegion.u32Height = 256; /* must be 8 aligned */
ctx->rgn[1].u32Color = 0xFFFF00;
ctx->rgn[1].u32Layer = 1;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[1]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[1].rgnHandle);
return s32Ret;
}
/* mosaic for vi*/
ctx->rgn[2].rgnHandle = 2;
ctx->rgn[2].stRgnAttr.enType = MOSAIC_RGN;
ctx->rgn[2].stMppChn.enModId = RK_ID_VI;
ctx->rgn[2].stMppChn.s32ChnId = VI_MAX_CHN_NUM;
ctx->rgn[2].stMppChn.s32DevId = ctx->vi[0].s32DevId;
ctx->rgn[2].stRegion.s32X =
RK_ALIGN_2(ctx->vi[0].u32Width - 256); /* must be 2 aligned */
ctx->rgn[2].stRegion.s32Y = 0; /* must be 2 aligned */
ctx->rgn[2].stRegion.u32Width = 256; /* must be 8 aligned */
ctx->rgn[2].stRegion.u32Height = 256; /* must be 8 aligned */
ctx->rgn[2].u32Layer = 2;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[2]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[2].rgnHandle);
return s32Ret;
}
/* mosaic for vi*/
ctx->rgn[3].rgnHandle = 3;
ctx->rgn[3].stRgnAttr.enType = MOSAIC_RGN;
ctx->rgn[3].stMppChn.enModId = RK_ID_VI;
ctx->rgn[3].stMppChn.s32ChnId = VI_MAX_CHN_NUM;
ctx->rgn[3].stMppChn.s32DevId = ctx->vi[0].s32DevId;
ctx->rgn[3].stRegion.s32X =
RK_ALIGN_2(ctx->vi[0].u32Width - 256); /* must be 2 aligned */
ctx->rgn[3].stRegion.s32Y =
RK_ALIGN_2(ctx->vi[0].u32Height - 256); /* must be 2 aligned */
ctx->rgn[3].stRegion.u32Width = 256; /* must be 8 aligned */
ctx->rgn[3].stRegion.u32Height = 256; /* must be 8 aligned */
ctx->rgn[3].u32Layer = 3;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[3]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[3].rgnHandle);
return s32Ret;
}
#elif defined(RV1126)
RK_U32 u32Color = 0xFFFFFF;
for (RK_S32 i = 0; i < RGN_COVER_NUM_FOR_1126; i++) {
// cover for venc
ctx->rgn[i].rgnHandle = i;
ctx->rgn[i].stRgnAttr.enType = COVER_RGN;
ctx->rgn[i].stMppChn.enModId = RK_ID_VENC;
ctx->rgn[i].stMppChn.s32ChnId = ctx->venc[0].s32ChnId;
ctx->rgn[i].stMppChn.s32DevId = 0;
ctx->rgn[i].stRegion.s32X = i * 128; // must be 16 aligned
ctx->rgn[i].stRegion.s32Y = i * 128; // must be 16 aligned
ctx->rgn[i].stRegion.u32Width = 640; // must be 16 aligned
ctx->rgn[i].stRegion.u32Height = 640; // must be 16 aligned
ctx->rgn[i].u32Color = u32Color;
RK_LOGE("--------------u32Color: %#X", ctx->rgn[i].u32Color);
u32Color >>= 4;
ctx->rgn[i].u32BgAlpha = 128;
ctx->rgn[i].u32FgAlpha = 128;
ctx->rgn[i].u32Layer = i;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[i]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[i].rgnHandle);
return s32Ret;
}
}
#endif
// overlay for venc
s32Ret =
SAMPLE_COMM_GetBmpResolution(gModeTest->inputBmp1Path, &u32Width, &u32Height);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_GetBmpResolution failure");
u32Width = 128;
u32Height = 128;
}
ctx->rgn[4].rgnHandle = 4;
ctx->rgn[4].stRgnAttr.enType = OVERLAY_RGN;
ctx->rgn[4].stMppChn.enModId = RK_ID_VENC;
ctx->rgn[4].stMppChn.s32ChnId = ctx->venc[0].s32ChnId;
ctx->rgn[4].stMppChn.s32DevId = 0;
ctx->rgn[4].stRegion.s32X =
RK_ALIGN_16(ctx->venc[0].u32Width / 2); // must be 16 aligned
ctx->rgn[4].stRegion.s32Y = 0; // must be 16 aligned
ctx->rgn[4].stRegion.u32Width = u32Width; // must be 8 aligned
ctx->rgn[4].stRegion.u32Height = u32Height; // must be 8 aligned
ctx->rgn[4].u32BmpFormat = RK_FMT_BGRA5551;
ctx->rgn[4].u32BgAlpha = 128;
ctx->rgn[4].u32FgAlpha = 128;
ctx->rgn[4].u32Layer = 4;
ctx->rgn[4].srcFileBmpName = gModeTest->inputBmp1Path;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[4]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[4].rgnHandle);
return s32Ret;
}
// overlay for venc
s32Ret =
SAMPLE_COMM_GetBmpResolution(gModeTest->inputBmp2Path, &u32Width, &u32Height);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_GetBmpResolution failure");
u32Width = 128;
u32Height = 128;
}
ctx->rgn[5].rgnHandle = 5;
ctx->rgn[5].stRgnAttr.enType = OVERLAY_RGN;
ctx->rgn[5].stMppChn.enModId = RK_ID_VENC;
ctx->rgn[5].stMppChn.s32ChnId = ctx->venc[0].s32ChnId;
ctx->rgn[5].stMppChn.s32DevId = 0;
ctx->rgn[5].stRegion.s32X =
RK_ALIGN_16(ctx->venc[0].u32Width / 2); // must be 16 aligned
ctx->rgn[5].stRegion.s32Y =
RK_ALIGN_16(ctx->venc[0].u32Height / 2); // must be 16 aligned
ctx->rgn[5].stRegion.u32Width = u32Width; // must be 8 aligned
ctx->rgn[5].stRegion.u32Height = u32Height; // must be 8 aligned
ctx->rgn[5].u32BmpFormat = RK_FMT_BGRA5551;
ctx->rgn[5].u32BgAlpha = 128;
ctx->rgn[5].u32FgAlpha = 128;
ctx->rgn[5].u32Layer = 5;
ctx->rgn[5].srcFileBmpName = gModeTest->inputBmp2Path;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[5]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[5].rgnHandle);
return s32Ret;
}
// overlay for venc
s32Ret =
SAMPLE_COMM_GetBmpResolution(gModeTest->inputBmp2Path, &u32Width, &u32Height);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_GetBmpResolution failure");
u32Width = 128;
u32Height = 128;
}
ctx->rgn[6].rgnHandle = 6;
ctx->rgn[6].stRgnAttr.enType = OVERLAY_RGN;
ctx->rgn[6].stMppChn.enModId = RK_ID_VENC;
ctx->rgn[6].stMppChn.s32ChnId = ctx->venc[0].s32ChnId;
ctx->rgn[6].stMppChn.s32DevId = 0;
ctx->rgn[6].stRegion.s32X =
RK_ALIGN_16(ctx->venc[0].u32Width / 2); // must be 16 aligned
ctx->rgn[6].stRegion.s32Y =
RK_ALIGN_16(ctx->venc[0].u32Height - u32Height); // must be 16 aligned
ctx->rgn[6].stRegion.u32Width = u32Width; // must be 8 aligned
ctx->rgn[6].stRegion.u32Height = u32Height; // must be 8 aligned
ctx->rgn[6].u32BmpFormat = RK_FMT_BGRA5551;
ctx->rgn[6].u32BgAlpha = 128;
ctx->rgn[6].u32FgAlpha = 128;
ctx->rgn[6].u32Layer = 6;
ctx->rgn[6].srcFileBmpName = gModeTest->inputBmp2Path;
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[6]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[6].rgnHandle);
return s32Ret;
}
return s32Ret;
}
static RK_S32 rgn_deinit(void) {
RK_S32 s32Ret = RK_SUCCESS;
for (RK_S32 i = 0; i < RGN_CHN_MAX; i++) {
s32Ret = SAMPLE_COMM_RGN_DestroyChn(&ctx->rgn[i]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_DestroyChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[i].rgnHandle);
}
}
return s32Ret;
}
static RK_S32 rgn_attachAndDetach(RK_U32 s32RgnChnNum) {
RK_S32 s32Ret = RK_FAILURE;
RK_S32 i = 0;
for (i = 0; i < s32RgnChnNum; i++) {
s32Ret = SAMPLE_COMM_RGN_DestroyChn(&ctx->rgn[i]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_DestroyChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[i].rgnHandle);
}
}
/* rgn attach */
for (RK_S32 i = 0; i < RGN_CHN_MAX; i++) {
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[i]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Handle:%d Failure Ret:%#X",
ctx->rgn[i].rgnHandle, s32Ret);
}
}
RK_LOGE("rgn_attachAndDetach switch test");
return RK_SUCCESS;
}
static RK_S32 encode_resolution_switch_for_rv1126(RK_S32 s32DstWidth, RK_S32 s32DstHeight,
RK_S32 s32ChnId) {
RK_S32 s32Ret = RK_FAILURE;
MPP_CHN_S stSrcChn, stDestChn;
/*rgn detach*/
for (RK_S32 i = 0; i < RGN_CHN_MAX; i++) {
s32Ret = SAMPLE_COMM_RGN_DestroyChn(&ctx->rgn[i]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_DestroyChn Failure s32Ret:%#X rgn handle:%d", s32Ret,
ctx->rgn[i].rgnHandle);
}
}
/* vi_venc thread quit*/
gModeTest->bIfViThreadQuit = RK_TRUE;
pthread_join(gModeTest->vi_venc_thread_id, RK_NULL);
/* tde deinit*/
SAMPLE_COMM_TDE_Destroy(&ctx->tde);
/* Venc[0] deinit */
gModeTest->bIfVencThreadQuit[0] = RK_TRUE;
pthread_join(ctx->venc[0].getStreamThread, RK_NULL);
/* VI[0] unbind VENC[0] and destroy venc*/
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[0].s32DevId;
stSrcChn.s32ChnId = ctx->vi[0].s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->venc[0].s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("VI and VENC bind failure:%X", s32Ret);
return s32Ret;
}
SAMPLE_COMM_VENC_DestroyChn(&ctx->venc[0]);
/* Disable Chn0 */
s32Ret = RK_MPI_VI_DisableChn(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_DisableChn failure:%X", s32Ret);
return s32Ret;
}
ctx->vi[0].s32ChnId = s32ChnId;
ctx->vi[0].stChnAttr.stSize.u32Width = s32DstWidth;
ctx->vi[0].stChnAttr.stSize.u32Height = s32DstHeight;
ctx->tde.u32SrcWidth = s32DstWidth;
ctx->tde.u32SrcHeight = s32DstHeight;
ctx->venc[0].u32Width = s32DstWidth;
ctx->venc[0].u32Height = s32DstHeight;
if (s32ChnId == 0) {
ctx->vi[0].stChnAttr.enPixelFormat = RK_FMT_YUV420SP;
ctx->tde.enSrcPixelFormat = RK_FMT_YUV420SP;
ctx->venc[0].enPixelFormat = RK_FMT_YUV420SP;
} else {
ctx->vi[0].stChnAttr.enPixelFormat = RK_FMT_YUV422SP;
ctx->tde.enSrcPixelFormat = RK_FMT_YUV422SP;
ctx->venc[0].enPixelFormat = RK_FMT_YUV422SP;
}
s32Ret = RK_MPI_VI_SetChnAttr(ctx->vi[0].u32PipeId, s32ChnId, &ctx->vi[0].stChnAttr);
s32Ret |= RK_MPI_VI_EnableChn(ctx->vi[0].u32PipeId, s32ChnId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Restart VI failure");
return s32Ret;
}
gModeTest->bIfVencThreadQuit[0] = RK_FALSE;
SAMPLE_COMM_VENC_CreateChn(&ctx->venc[0]);
s32Ret = SAMPLE_COMM_TDE_Create(&ctx->tde);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_TDE_Create failure:%#X", s32Ret);
return s32Ret;
}
/* vi get stream thread lunch */
gModeTest->bIfViThreadQuit = RK_FALSE;
pthread_create(&gModeTest->vi_venc_thread_id, 0, vi_venc_thread,
(void *)(&ctx->vi[0]));
/* bind vi[0] and venc[0]*/
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[0].s32DevId;
stSrcChn.s32ChnId = ctx->vi[0].s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->venc[0].s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_Bind vi[0] and venc[0] failure:%#X", s32Ret);
return s32Ret;
}
for (RK_S32 i = 0; i < RGN_CHN_MAX; i++) {
s32Ret = SAMPLE_COMM_RGN_CreateChn(&ctx->rgn[i]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_RGN_CreateChn Handle:%d Failure Ret:%#X",
ctx->rgn[i].rgnHandle, s32Ret);
}
}
RK_LOGE("RV1126 encode_resolution_switch success");
return s32Ret;
}
static RK_S32 rgn_change_posit(void) {
RK_S32 s32Ret = RK_FAILURE;
RGN_CHN_ATTR_S stChnAttr;
memset(&stChnAttr, 0, sizeof(RGN_CHN_ATTR_S));
if (gModeTest->s32ModuleTestType != 0) {
return RK_SUCCESS;
}
/* change rgn[0] posit */
s32Ret = RK_MPI_RGN_GetDisplayAttr(ctx->rgn[0].rgnHandle, &ctx->rgn[0].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[0] position ----RK_MPI_RGN_GetDisplayAttr failure:%X",
s32Ret);
return s32Ret;
}
stChnAttr.unChnAttr.stCoverChn.stRect.s32X =
RK_ALIGN_16(stChnAttr.unChnAttr.stCoverChn.stRect.s32X + 10);
if (stChnAttr.unChnAttr.stCoverChn.stRect.s32X >
ctx->vi[0].u32Width - ctx->rgn[0].stRegion.u32Width - 50) {
stChnAttr.unChnAttr.stCoverChn.stRect.s32X =
RK_ALIGN_16(ctx->rgn[0].stRegion.s32X);
}
s32Ret = RK_MPI_RGN_SetDisplayAttr(ctx->rgn[0].rgnHandle, &ctx->rgn[0].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[0] position ----RK_MPI_RGN_SetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
/* change rgn[1] posit*/
s32Ret = RK_MPI_RGN_GetDisplayAttr(ctx->rgn[1].rgnHandle, &ctx->rgn[1].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[1] position ----RK_MPI_RGN_GetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
stChnAttr.unChnAttr.stCoverChn.stRect.s32X =
RK_ALIGN_16(stChnAttr.unChnAttr.stCoverChn.stRect.s32X + 10);
if (stChnAttr.unChnAttr.stCoverChn.stRect.s32X >
ctx->vi[0].u32Width - ctx->rgn[1].stRegion.u32Width - 50) {
stChnAttr.unChnAttr.stCoverChn.stRect.s32X =
RK_ALIGN_16(ctx->rgn[1].stRegion.s32X);
}
s32Ret = RK_MPI_RGN_SetDisplayAttr(ctx->rgn[1].rgnHandle, &ctx->rgn[1].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[1] position ----RK_MPI_RGN_SetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
/* change rgn[2] posit*/
s32Ret = RK_MPI_RGN_GetDisplayAttr(ctx->rgn[2].rgnHandle, &ctx->rgn[2].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[2] position ----RK_MPI_RGN_GetDisplayAttrs Failure:%X",
s32Ret);
return s32Ret;
}
#if defined(RV1106)
stChnAttr.unChnAttr.stMosaicChn.stRect.s32Y =
RK_ALIGN_2(stChnAttr.unChnAttr.stMosaicChn.stRect.s32Y + 10);
if (stChnAttr.unChnAttr.stMosaicChn.stRect.s32Y >
ctx->vi[0].u32Height - ctx->rgn[2].stRegion.u32Height) {
stChnAttr.unChnAttr.stMosaicChn.stRect.s32Y =
RK_ALIGN_16(ctx->rgn[2].stRegion.s32Y);
}
#elif defined(RV1126)
stChnAttr.unChnAttr.stCoverChn.stRect.s32Y =
RK_ALIGN_16(stChnAttr.unChnAttr.stCoverChn.stRect.s32Y + 20);
if (stChnAttr.unChnAttr.stCoverChn.stRect.s32Y >
ctx->venc[0].u32Height - ctx->rgn[2].stRegion.u32Height) {
stChnAttr.unChnAttr.stCoverChn.stRect.s32Y =
RK_ALIGN_16(ctx->rgn[2].stRegion.s32Y);
}
#endif
s32Ret = RK_MPI_RGN_SetDisplayAttr(ctx->rgn[2].rgnHandle, &ctx->rgn[2].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[2] position ----RK_MPI_RGN_SetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
/* change rgn[3] posit */
s32Ret = RK_MPI_RGN_GetDisplayAttr(ctx->rgn[3].rgnHandle, &ctx->rgn[3].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[3] position ----RK_MPI_RGN_GetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
#if defined(RV1106)
stChnAttr.unChnAttr.stMosaicChn.stRect.s32X =
RK_ALIGN_2(stChnAttr.unChnAttr.stMosaicChn.stRect.s32X - 10);
if (stChnAttr.unChnAttr.stMosaicChn.stRect.s32X < 0) {
stChnAttr.unChnAttr.stMosaicChn.stRect.s32X =
RK_ALIGN_16(ctx->rgn[3].stRegion.s32X);
}
#elif defined(RV1126)
stChnAttr.unChnAttr.stCoverChn.stRect.s32X =
RK_ALIGN_16(stChnAttr.unChnAttr.stCoverChn.stRect.s32X - 20);
if (stChnAttr.unChnAttr.stCoverChn.stRect.s32X < 0) {
stChnAttr.unChnAttr.stCoverChn.stRect.s32X =
RK_ALIGN_16(ctx->rgn[3].stRegion.s32X);
}
#endif
s32Ret = RK_MPI_RGN_SetDisplayAttr(ctx->rgn[3].rgnHandle, &ctx->rgn[3].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[3] position ----RK_MPI_RGN_SetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
/* change rgn[4] posit*/
s32Ret = RK_MPI_RGN_GetDisplayAttr(ctx->rgn[4].rgnHandle, &ctx->rgn[4].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[4] position ----RK_MPI_RGN_GetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
stChnAttr.unChnAttr.stOverlayChn.stPoint.s32Y =
RK_ALIGN_16(stChnAttr.unChnAttr.stOverlayChn.stPoint.s32Y + 10);
if (stChnAttr.unChnAttr.stOverlayChn.stPoint.s32Y >
ctx->vi[0].u32Height - ctx->rgn[4].stRegion.u32Height - 50) {
stChnAttr.unChnAttr.stOverlayChn.stPoint.s32Y =
RK_ALIGN_16(ctx->rgn[4].stRegion.s32Y);
}
s32Ret = RK_MPI_RGN_SetDisplayAttr(ctx->rgn[4].rgnHandle, &ctx->rgn[4].stMppChn,
&stChnAttr);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("Change RGN[4] position ----RK_MPI_RGN_SetDisplayAttr Failure:%X",
s32Ret);
return s32Ret;
}
return RK_SUCCESS;
}
static RK_S32 rtsp_init(CODEC_TYPE_E enCodecType) {
RK_S32 i = 0;
g_rtsplive = create_rtsp_demo(554);
RK_CHAR rtspAddr[BUFFER_SIZE] = {0};
for (i = 0; i < VENC_CHN_MAX; i++) {
if (i == TDE_JPEG_CHNID || i == COMBO_JPEG_CHNID) {
continue;
}
sprintf(rtspAddr, "/live/%d", i);
g_rtsp_session[i] = rtsp_new_session(g_rtsplive, rtspAddr);
if (enCodecType == RK_CODEC_TYPE_H264) {
rtsp_set_video(g_rtsp_session[i], RTSP_CODEC_ID_VIDEO_H264, RK_NULL, 0);
} else if (enCodecType == RK_CODEC_TYPE_H265) {
rtsp_set_video(g_rtsp_session[i], RTSP_CODEC_ID_VIDEO_H265, RK_NULL, 0);
} else {
RK_LOGE("not support other type\n");
g_rtsp_ifenbale = RK_FALSE;
return RK_SUCCESS;
}
rtsp_sync_video_ts(g_rtsp_session[i], rtsp_get_reltime(), rtsp_get_ntptime());
RK_LOGE("rtsp <%s> init success", rtspAddr);
}
g_rtsp_ifenbale = RK_TRUE;
return RK_SUCCESS;
}
static RK_S32 rtsp_deinit(void) {
if (g_rtsplive)
rtsp_del_demo(g_rtsplive);
return RK_SUCCESS;
}
static RK_S32 media_init(RK_CHAR *pIqFileDir) {
MPP_CHN_S stSrcChn, stDestChn;
RK_S32 s32Ret = RK_FAILURE;
if (pIqFileDir) {
s32Ret = SAMPLE_COMM_ISP_Init(gModeTest->s32CamId, gModeTest->eHdrMode,
gModeTest->bMultictx, gModeTest->pIqFileDir);
#ifdef RV1126
if (gModeTest->s32ModuleTestType == 4) {
SAMPLE_COMM_ISP_SetLDCH(gModeTest->s32CamId, 1, 1);
}
#endif
s32Ret |= SAMPLE_COMM_ISP_Run(gModeTest->s32CamId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("ISP init failure");
return s32Ret;
}
}
if (RK_MPI_SYS_Init() != RK_SUCCESS) {
RK_LOGE("RK_MPI_SYS_Init failure");
return RK_FAILURE;
}
s32Ret = rtsp_init(gModeTest->enCodecType);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("rtsp_init failure");
return s32Ret;
}
s32Ret = SAMPLE_COMM_VI_CreateChn(&ctx->vi[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VI_CreateChn failure:%#X", s32Ret);
return s32Ret;
}
s32Ret = SAMPLE_COMM_VI_CreateChn(&ctx->vi[1]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VI_CreateChn failure:%#X", s32Ret);
return s32Ret;
}
#if defined(ROCKIT_IVS) || defined(ROCKIVA)
s32Ret = SAMPLE_COMM_VI_CreateChn(&ctx->vi[2]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_VI_CreateChn failure:%#X", s32Ret);
return s32Ret;
}
#if defined(ROCKIT_IVS)
s32Ret = SAMPLE_COMM_IVS_Create(&ctx->ivs);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_IVS_Create failure:%#X", s32Ret);
return s32Ret;
}
#endif
#endif
#ifdef ROCKIVA
SAMPLE_COMM_IVA_Create(&ctx->iva);
#endif
gModeTest->bIfVencThreadQuit[0] = RK_FALSE;
SAMPLE_COMM_VENC_CreateChn(&ctx->venc[0]);
gModeTest->bIfVencThreadQuit[1] = RK_FALSE;
SAMPLE_COMM_VENC_CreateChn(&ctx->venc[1]);
if (!gModeTest->bIfWrapEnable) {
gModeTest->bIfVencThreadQuit[2] = RK_FALSE;
SAMPLE_COMM_VENC_CreateChn(&ctx->venc[2]);
}
#ifdef ROCKCOMBO
gModeTest->bIfVencThreadQuit[3] = RK_FALSE;
SAMPLE_COMM_VENC_CreateChn(&ctx->venc[3]);
#endif
if (!gModeTest->bIfWrapEnable) {
SAMPLE_COMM_TDE_Create(&ctx->tde);
}
/* rgn init*/
rgn_init();
/* VI[0] bind VENC[0] */
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[0].s32DevId;
stSrcChn.s32ChnId = ctx->vi[0].s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->venc[0].s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("VI and VENC bind failure:%#X", s32Ret);
return s32Ret;
}
/* VI[1] bind VENC[1] */
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[1].s32DevId;
stSrcChn.s32ChnId = ctx->vi[1].s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->venc[1].s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("VI and VENC bind failure:%X", s32Ret);
return s32Ret;
}
#ifdef ROCKIT_IVS
/* VI[2] bind IVS[0]*/
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[2].s32DevId;
stSrcChn.s32ChnId = ctx->vi[2].s32ChnId;
stDestChn.enModId = RK_ID_IVS;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->ivs.s32ChnId;
s32Ret = SAMPLE_COMM_Bind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("VI and IVS bind failure:%X", s32Ret);
return s32Ret;
}
#endif
if (!gModeTest->bIfWrapEnable) {
RK_LOGE("wrap close");
/* VI[0] Venc[2] therad launch */
gModeTest->bIfViThreadQuit = RK_FALSE;
pthread_create(&gModeTest->vi_venc_thread_id, 0, vi_venc_thread,
(void *)(&ctx->vi[0]));
}
#ifdef ROCKIT_IVS
/* ivs detect thread launch */
gModeTest->bIfIvsDetectThreadQuit = RK_FALSE;
pthread_create(&gModeTest->ivs_detect_thread_id, 0, ivs_detect_thread,
(void *)&ctx->ivs);
#endif
#ifdef ROCKIVA
// /* VI[2] IVA thread launch */
gModeTest->bIfViIvaTHreadQuit = RK_FALSE;
pthread_create(&gModeTest->vi_iva_thread_id, 0, vi_iva_thread, RK_NULL);
#endif
return s32Ret;
}
static RK_S32 media_deinit(void) {
RK_S32 s32Ret = RK_FAILURE;
MPP_CHN_S stSrcChn, stDestChn;
/* rgn deinit*/
rgn_deinit();
#ifdef ROCKIVA
/* Destroy IVA */
gModeTest->bIfViIvaTHreadQuit = RK_TRUE;
pthread_join(gModeTest->vi_iva_thread_id, RK_NULL);
SAMPLE_COMM_IVA_Destroy(&ctx->iva);
#endif
#ifdef ROCKIT_IVS
/* ivs detect thread exit*/
gModeTest->bIfIvsDetectThreadQuit = RK_TRUE;
pthread_join(gModeTest->ivs_detect_thread_id, RK_NULL);
/* ivs chn destroy*/
s32Ret = RK_MPI_IVS_DestroyChn(ctx->ivs.s32ChnId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_IVS_DestroyChn failure:%X", s32Ret);
return s32Ret;
}
#endif
if (!gModeTest->bIfWrapEnable) {
RK_LOGE("wrap close");
/* venc[2] deinit and Destroy*/
gModeTest->bIfVencThreadQuit[2] = RK_TRUE;
pthread_join(ctx->venc[2].getStreamThread, RK_NULL);
SAMPLE_COMM_VENC_DestroyChn(&ctx->venc[2]);
/* vi_venc thread quit*/
gModeTest->bIfViThreadQuit = RK_TRUE;
pthread_join(gModeTest->vi_venc_thread_id, RK_NULL);
/* tde deinit*/
SAMPLE_COMM_TDE_Destroy(&ctx->tde);
}
#ifdef ROCKCOMBO
/* venc[3] deinit and Destroy */
gModeTest->bIfVencThreadQuit[3] = RK_TRUE;
pthread_join(ctx->venc[3].getStreamThread, RK_NULL);
SAMPLE_COMM_VENC_DestroyChn(&ctx->venc[3]);
#endif
/* Venc[0] deinit */
gModeTest->bIfVencThreadQuit[0] = RK_TRUE;
pthread_join(ctx->venc[0].getStreamThread, RK_NULL);
/* VI[0] unbind VENC[0] and destroy venc*/
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[0].s32DevId;
stSrcChn.s32ChnId = ctx->vi[0].s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->venc[0].s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("VI and VENC bind failure:%X", s32Ret);
return s32Ret;
}
SAMPLE_COMM_VENC_DestroyChn(&ctx->venc[0]);
/* Venc[1] deinit */
gModeTest->bIfVencThreadQuit[1] = RK_TRUE;
pthread_join(ctx->venc[1].getStreamThread, RK_NULL);
/* VI[1] unbind VENC[1] and destroy venc*/
stSrcChn.enModId = RK_ID_VI;
stSrcChn.s32DevId = ctx->vi[1].s32DevId;
stSrcChn.s32ChnId = ctx->vi[1].s32ChnId;
stDestChn.enModId = RK_ID_VENC;
stDestChn.s32DevId = 0;
stDestChn.s32ChnId = ctx->venc[1].s32ChnId;
s32Ret = SAMPLE_COMM_UnBind(&stSrcChn, &stDestChn);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("VI and VENC bind failure:%X", s32Ret);
return s32Ret;
}
SAMPLE_COMM_VENC_DestroyChn(&ctx->venc[1]);
/* Destroy VI[0] VI[1] VI[2] */
s32Ret = RK_MPI_VI_DisableChn(ctx->vi[0].u32PipeId, ctx->vi[0].s32ChnId);
s32Ret |= RK_MPI_VI_DisableChn(ctx->vi[1].u32PipeId, ctx->vi[1].s32ChnId);
#if defined(ROCKIT_IVS) || defined(ROCKIVA)
s32Ret |= RK_MPI_VI_DisableChn(ctx->vi[2].u32PipeId, ctx->vi[2].s32ChnId);
#endif
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_DisableChn failure:%X", s32Ret);
return s32Ret;
}
s32Ret = RK_MPI_VI_DisableDev(ctx->vi[0].s32DevId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_VI_DisableChn failure:%X", s32Ret);
return s32Ret;
}
/* rtsp deinit */
rtsp_deinit();
s32Ret = RK_MPI_SYS_Exit();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("RK_MPI_SYS_Exit failure s32Ret:%#X", s32Ret);
return s32Ret;
}
s32Ret = SAMPLE_COMM_ISP_Stop(gModeTest->s32CamId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("SAMPLE_COMM_ISP_Stop failure s32Ret:%#X", s32Ret);
return s32Ret;
}
return s32Ret;
}
static RK_S32 media_deinit_init(void) {
RK_S32 s32Ret = RK_FAILURE;
s32Ret = media_deinit();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("media_deinit failure");
return s32Ret;
}
s32Ret = media_init(gModeTest->pIqFileDir);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("media_init failure");
return s32Ret;
}
RK_LOGE("---------------------media_deinit_init StressTest");
return RK_SUCCESS;
}
static void wait_module_test_switch_success(void) {
for (RK_U32 i = 0; i < VENC_CHN_MAX; i++) {
#if defined(RV1106)
if (gModeTest->bIfWrapEnable && i == TDE_JPEG_CHNID) {
continue;
}
#elif defined(RV1126)
if (i == COMBO_JPEG_CHNID) {
continue;
}
#endif
pthread_mutex_lock(&g_frame_count_mutex[i]);
gModeTest->u32VencGetFrameCount[i] = 0;
pthread_mutex_unlock(&g_frame_count_mutex[i]);
sem_wait(&g_sem_module_test[i]);
}
}
static void *sample_demo_stresstest(void *pArgs) {
prctl(PR_SET_NAME, "sample_demo_stress");
RK_CHAR *pCTestModel = RK_NULL;
RK_S32 s32Ret = RK_FAILURE;
RK_U32 u32TestCount = 0;
RK_S32 s32SrcWidth = ctx->vi[0].u32Width;
RK_S32 s32SrcHeight = ctx->vi[0].u32Height;
RK_S32 s32DstWidth = 1920;
RK_S32 s32DstHeight = 1080;
RK_S32 s32ViChnId = 0;
wait_module_test_switch_success();
SAMPLE_COMM_DumpMeminfo("Enter sample_demo_stresstest", gModeTest->s32ModuleTestType);
while (!gModeTest->bIfModuleTestThreadQuit) {
switch (gModeTest->s32ModuleTestType) {
case 1:
s32Ret = pnMode_stressTest(gModeTest->s32CamId, gModeTest->eHdrMode,
gModeTest->bMultictx, gModeTest->pIqFileDir);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("pnMode_stressTest failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "pnMode_stressTest";
break;
case 2:
s32Ret = hdrMode_stressTest(gModeTest->s32CamId, gModeTest->eHdrMode,
gModeTest->bMultictx, gModeTest->pIqFileDir);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("hdrMode_stressTest failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "hdrMode_stressTest";
break;
case 3:
s32Ret = frameRate_switchTest(&ctx->vi[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("frameRate_switchTest failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "frameRate_switchTest";
break;
case 4:
s32Ret = ldchMode_test(gModeTest->s32CamId);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("ldchMode_test failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "ldchMode_test";
break;
case 5:
s32Ret = vencResolution_switchTest(&ctx->tde, &ctx->venc[0], &ctx->vi[0],
&ctx->venc[3]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vencResolution_switchTest failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "vencResolution_switchTest";
break;
case 6:
g_rtsp_ifenbale = RK_FALSE;
s32Ret = encode_typeSwitch(&gModeTest->bIfVencThreadQuit[0], &ctx->venc[0],
&ctx->vi[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("encode_typeSwitch failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "encode_typeSwitch";
break;
case 7:
s32Ret = smartP_switchTest(&gModeTest->bIfVencThreadQuit[0], &ctx->venc[0],
&ctx->vi[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("smartP_switchTest failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "smartP_switchTest";
break;
case 8:
s32Ret = smartEncode_switchTest(&gModeTest->bIfVencThreadQuit[0],
&ctx->venc[0], &ctx->vi[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("smartEncode_switchTest failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "smartEncode_switchTest";
break;
case 9:
s32Ret = motionDeblur_test(&gModeTest->bIfVencThreadQuit[0], &ctx->venc[0],
&ctx->vi[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("motionDeblur_test failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "motionDeblur_test";
break;
case 10:
s32Ret = vencForceIdr_test(&ctx->venc[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vencForceIdr_test failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "vencForceIdr_test";
break;
case 11:
s32Ret = vencSetRotation_test(&ctx->venc[0]);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("vencSetRotation_test failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "vencSetRotation_test";
break;
case 12:
s32Ret = rgn_attachAndDetach(RGN_CHN_MAX);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("rgn_attachAndDetach failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "rgn_attachAndDetach";
break;
case 13:
if (ctx->vi[0].stChnAttr.stSize.u32Width == s32SrcWidth) {
s32ViChnId = 1;
RK_LOGE("--------------ch:%d w:%d h:%d", s32ViChnId, s32DstWidth,
s32DstHeight);
s32Ret = encode_resolution_switch_for_rv1126(s32DstWidth, s32DstHeight,
s32ViChnId);
} else {
s32ViChnId = 0;
RK_LOGE("--------------ch:%d w:%d h:%d", s32ViChnId, s32SrcWidth,
s32SrcHeight);
s32Ret = encode_resolution_switch_for_rv1126(s32SrcWidth, s32SrcHeight,
s32ViChnId);
}
if (s32Ret != RK_SUCCESS) {
RK_LOGE("encode_resolution_switch_for_rv1126 failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "encode_resolution_switch_for_rv1126";
break;
case 14:
s32Ret = media_deinit_init();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("media_deinit_init failure %X", s32Ret);
program_handle_error(__func__, __LINE__);
return RK_NULL;
}
pCTestModel = "media_deinit_init";
break;
default:
RK_LOGE("this test type is not support");
}
wait_module_test_switch_success();
u32TestCount++;
RK_LOGE("-----------------moduleTest:%s switch success total:%d now_count:%d",
pCTestModel, gModeTest->u32ModuleTestLoop, u32TestCount);
if (gModeTest->u32ModuleTestLoop > 0 &&
u32TestCount >= gModeTest->u32ModuleTestLoop) {
RK_LOGE("------------------moduleTest: %s end(pass)", pCTestModel);
gModeTest->bIfModuleTestopen = RK_FALSE;
program_normal_exit(__func__, __LINE__);
break;
}
}
SAMPLE_COMM_DumpMeminfo("Exit sample_demo_stresstest", gModeTest->s32ModuleTestType);
RK_LOGE("sample_demo_stresstest exit!!!");
return RK_NULL;
}
static RK_S32 global_param_init(void) {
ctx = (SAMPLE_MPI_CTX_S *)malloc(sizeof(SAMPLE_MPI_CTX_S));
if (ctx == RK_NULL) {
RK_LOGE("malloc for ctx failure");
return RK_FAILURE;
}
memset(ctx, 0, sizeof(SAMPLE_MPI_CTX_S));
gModeTest = (g_mode_test *)malloc(sizeof(g_mode_test));
if (gModeTest == RK_NULL) {
RK_LOGE("malloc for gModeTest failure");
return RK_FAILURE;
}
memset(gModeTest, 0, sizeof(g_mode_test));
gModeTest->u32ModuleTestLoop = -1;
gModeTest->u32TestFrameCount = 500;
for (RK_S32 i = 0; i < VENC_CHN_MAX; i++) {
sem_init(&g_sem_module_test[i], 0, 0);
if (pthread_mutex_init(&g_frame_count_mutex[i], RK_NULL) != 0) {
RK_LOGE("mutex init failure \n");
return RK_FAILURE;
}
}
if (RK_SUCCESS != pthread_mutex_init(&g_rtsp_mutex, RK_NULL)) {
RK_LOGE("pthread_mutex_init failure");
return RK_FAILURE;
}
return RK_SUCCESS;
}
static RK_S32 global_param_deinit(void) {
if (ctx) {
free(ctx);
ctx = RK_NULL;
}
if (gModeTest) {
free(gModeTest);
gModeTest = RK_NULL;
}
for (RK_S32 i = 0; i < VENC_CHN_MAX; i++) {
sem_destroy(&g_sem_module_test[i]);
pthread_mutex_destroy(&g_frame_count_mutex[i]);
}
pthread_mutex_destroy(&g_rtsp_mutex);
return RK_SUCCESS;
}
int main(int argc, char *argv[]) {
RK_S32 s32Ret = RK_FAILURE;
RK_S32 s32CamId = 0;
RK_S32 s32LoopCnt = -1;
RK_U32 u32VideoWidth = 1920;
RK_U32 u32VideoHeight = 1080;
RK_U32 u32SubVideoWidth = 704;
RK_U32 u32SubVideoHeight = 576;
RK_U32 u32JpegWidth = 704;
RK_U32 u32JpegHight = 576;
RK_U32 u32IvsWidth = 576;
RK_U32 u32IvsHeight = 324;
RK_U32 u32IvaDetectFrameRate = 10;
RK_U32 u32VencFps = 25;
RK_U32 u32BitRate = 2 * 1024;
RK_U32 u32ViBuffCnt = 2;
RK_U32 u32VencBuffSize = 0;
RK_U32 u32WrapLine = 4;
#ifdef RV1126
RK_U32 u32Chnid = 1;
#endif
RK_CHAR *pOutPathVenc = RK_NULL;
RK_CHAR *pIqFileDir = RK_NULL;
RK_CHAR *pIvaModelPath = "/oem/usr/lib/";
RK_BOOL bMultictx = RK_FALSE;
RK_BOOL bIfWrapEnable = RK_FALSE;
RK_BOOL bIfSmartpEnable = RK_FALSE;
CODEC_TYPE_E enCodecType = RK_CODEC_TYPE_H264;
VENC_RC_MODE_E enRcMode = VENC_RC_MODE_H264CBR;
rk_aiq_working_mode_t eHdrMode = RK_AIQ_WORKING_MODE_NORMAL;
pthread_t modeTest_thread_id;
if (argc < 2) {
print_usage(argv[0]);
g_exit_result = RK_FAILURE;
goto __PARAM_INIT_FAILED;
}
SAMPLE_COMM_CheckFd(RK_TRUE);
s32Ret = global_param_init();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("global_param_init failure");
g_exit_result = RK_FAILURE;
goto __PARAM_INIT_FAILED;
}
signal(SIGINT, sigterm_handler);
signal(SIGTERM, sigterm_handler);
RK_S32 c = 0;
while ((c = getopt_long(argc, argv, optstr, long_options, RK_NULL)) != -1) {
const char *tmp_optarg = optarg;
switch (c) {
case 'a':
if (!optarg && RK_NULL != argv[optind] && '-' != argv[optind][0]) {
tmp_optarg = argv[optind++];
}
if (tmp_optarg) {
pIqFileDir = (char *)tmp_optarg;
} else {
pIqFileDir = RK_NULL;
}
break;
case 'w':
u32VideoWidth = atoi(optarg);
break;
case 'h':
u32VideoHeight = atoi(optarg);
break;
case 'o':
pOutPathVenc = optarg;
break;
case 'l':
s32LoopCnt = atoi(optarg);
break;
case 'm':
gModeTest->s32ModuleTestType = atoi(optarg);
break;
case 'e':
if (!strcmp(optarg, "h264cbr")) {
enCodecType = RK_CODEC_TYPE_H264;
enRcMode = VENC_RC_MODE_H264CBR;
} else if (!strcmp(optarg, "h264vbr")) {
enCodecType = RK_CODEC_TYPE_H264;
enRcMode = VENC_RC_MODE_H264VBR;
} else if (!strcmp(optarg, "h264avbr")) {
enCodecType = RK_CODEC_TYPE_H264;
enRcMode = VENC_RC_MODE_H264AVBR;
} else if (!strcmp(optarg, "h265cbr")) {
enCodecType = RK_CODEC_TYPE_H265;
enRcMode = VENC_RC_MODE_H265CBR;
} else if (!strcmp(optarg, "h265vbr")) {
enCodecType = RK_CODEC_TYPE_H265;
enRcMode = VENC_RC_MODE_H265VBR;
} else if (!strcmp(optarg, "h265avbr")) {
enCodecType = RK_CODEC_TYPE_H265;
enRcMode = VENC_RC_MODE_H265AVBR;
} else {
printf("ERROR: Invalid encoder type.\n");
print_usage(argv[0]);
g_exit_result = RK_FAILURE;
goto __PARAM_INIT_FAILED;
}
break;
case 'r':
bIfWrapEnable = atoi(optarg);
gModeTest->bIfWrapEnable = bIfWrapEnable;
break;
case 'f':
u32VencFps = atoi(optarg);
break;
case 'i':
gModeTest->inputBmp1Path = optarg;
break;
case 'I':
gModeTest->inputBmp2Path = optarg;
break;
case 'p':
if (atoi(optarg)) {
bIfSmartpEnable = RK_TRUE;
} else {
bIfSmartpEnable = RK_FALSE;
}
break;
case 'v':
u32ViBuffCnt = atoi(optarg);
break;
case 't' + 'l':
gModeTest->u32ModuleTestLoop = atoi(optarg);
break;
case 'c':
gModeTest->u32TestFrameCount = atoi(optarg);
break;
case 'd':
u32IvaDetectFrameRate = atoi(optarg);
break;
case 'v' + 's':
u32VencBuffSize = atoi(optarg);
break;
case 'w' + 'l':
if (0 == atoi(optarg)) {
u32WrapLine = 2;
} else if (1 == atoi(optarg)) {
u32WrapLine = 4;
} else if (2 == atoi(optarg)) {
u32WrapLine = 8;
} else {
RK_LOGE("ERROR: Invalid WrapLine Value.");
print_usage(argv[0]);
g_exit_result = RK_FAILURE;
goto __PARAM_INIT_FAILED;
}
break;
case 'i' + 'm':
pIvaModelPath = optarg;
break;
#ifdef RV1126
case 'v' + 'i':
u32Chnid = atoi(optarg);
break;
#endif
case '?':
default:
print_usage(argv[0]);
return 0;
}
}
gModeTest->enCodecType = enCodecType;
if (pIqFileDir) {
#ifdef RKAIQ
printf("#Rkaiq XML DirPath: %s\n", pIqFileDir);
printf("#bMultictx: %d\n\n", bMultictx);
RK_LOGE("eHdrMode: %d", eHdrMode);
gModeTest->s32CamId = s32CamId;
gModeTest->eHdrMode = eHdrMode;
gModeTest->bMultictx = bMultictx;
gModeTest->pIqFileDir = pIqFileDir;
#endif
}
/* Init VI[0] */
ctx->vi[0].u32Width = u32VideoWidth;
ctx->vi[0].u32Height = u32VideoHeight;
ctx->vi[0].s32DevId = 0;
ctx->vi[0].u32PipeId = ctx->vi[0].s32DevId;
ctx->vi[0].s32ChnId = 0;
#ifdef RV1126
ctx->vi[0].s32ChnId = u32Chnid;
#endif
ctx->vi[0].stChnAttr.stIspOpt.stMaxSize.u32Width = u32VideoWidth;
ctx->vi[0].stChnAttr.stIspOpt.stMaxSize.u32Height = u32VideoHeight;
ctx->vi[0].stChnAttr.stIspOpt.u32BufCount = u32ViBuffCnt;
ctx->vi[0].stChnAttr.stIspOpt.enMemoryType = VI_V4L2_MEMORY_TYPE_DMABUF;
ctx->vi[0].stChnAttr.u32Depth = 1;
ctx->vi[0].stChnAttr.enPixelFormat = RK_FMT_YUV420SP;
ctx->vi[0].stChnAttr.enCompressMode = COMPRESS_MODE_NONE;
ctx->vi[0].stChnAttr.stFrameRate.s32SrcFrameRate = -1;
ctx->vi[0].stChnAttr.stFrameRate.s32DstFrameRate = -1;
ctx->vi[0].bWrapIfEnable = bIfWrapEnable;
ctx->vi[0].u32BufferLine = ctx->vi[0].u32Height / u32WrapLine;
/* Init VI[1] */
ctx->vi[1].u32Width = u32SubVideoWidth;
ctx->vi[1].u32Height = u32SubVideoHeight;
ctx->vi[1].s32DevId = 0;
ctx->vi[1].u32PipeId = ctx->vi[1].s32DevId;
ctx->vi[1].s32ChnId = 1;
#ifdef RV1126
ctx->vi[1].s32ChnId = 2;
#endif
ctx->vi[1].stChnAttr.stIspOpt.stMaxSize.u32Width = u32SubVideoWidth;
ctx->vi[1].stChnAttr.stIspOpt.stMaxSize.u32Height = u32SubVideoHeight;
ctx->vi[1].stChnAttr.stIspOpt.u32BufCount = 2;
ctx->vi[1].stChnAttr.stIspOpt.enMemoryType = VI_V4L2_MEMORY_TYPE_DMABUF;
ctx->vi[1].stChnAttr.u32Depth = 0;
ctx->vi[1].stChnAttr.enPixelFormat = RK_FMT_YUV420SP;
ctx->vi[1].stChnAttr.enCompressMode = COMPRESS_MODE_NONE;
ctx->vi[1].stChnAttr.stFrameRate.s32SrcFrameRate = -1;
ctx->vi[1].stChnAttr.stFrameRate.s32DstFrameRate = -1;
#if defined(ROCKIT_IVS) || defined(ROCKIVA)
/* Init VI[2] */
ctx->vi[2].u32Width = u32IvsWidth;
ctx->vi[2].u32Height = u32IvsHeight;
ctx->vi[2].s32DevId = 0;
ctx->vi[2].u32PipeId = ctx->vi[2].s32DevId;
ctx->vi[2].s32ChnId = 2;
#ifdef RV1126
ctx->vi[2].s32ChnId = 3;
#endif
ctx->vi[2].stChnAttr.stIspOpt.stMaxSize.u32Width = u32IvsWidth;
ctx->vi[2].stChnAttr.stIspOpt.stMaxSize.u32Height = u32IvsHeight;
ctx->vi[2].stChnAttr.stIspOpt.u32BufCount = 2;
ctx->vi[2].stChnAttr.stIspOpt.enMemoryType = VI_V4L2_MEMORY_TYPE_DMABUF;
ctx->vi[2].stChnAttr.u32Depth = 2;
ctx->vi[2].stChnAttr.enPixelFormat = RK_FMT_YUV420SP;
ctx->vi[2].stChnAttr.enCompressMode = COMPRESS_MODE_NONE;
ctx->vi[2].stChnAttr.stFrameRate.s32SrcFrameRate = -1;
ctx->vi[2].stChnAttr.stFrameRate.s32DstFrameRate = -1;
#endif
#ifdef ROCKIT_IVS
/* Init ivs */
ctx->ivs.s32ChnId = 0;
ctx->ivs.stIvsAttr.enMode = IVS_MODE_MD_OD;
ctx->ivs.stIvsAttr.u32PicWidth = u32IvsWidth;
ctx->ivs.stIvsAttr.u32PicHeight = u32IvsHeight;
ctx->ivs.stIvsAttr.enPixelFormat = RK_FMT_YUV420SP;
ctx->ivs.stIvsAttr.s32Gop = 30;
ctx->ivs.stIvsAttr.bSmearEnable = RK_FALSE;
ctx->ivs.stIvsAttr.bWeightpEnable = RK_FALSE;
ctx->ivs.stIvsAttr.bMDEnable = RK_TRUE;
ctx->ivs.stIvsAttr.s32MDInterval = 5;
ctx->ivs.stIvsAttr.bMDNightMode = RK_TRUE;
ctx->ivs.stIvsAttr.u32MDSensibility = 3;
ctx->ivs.stIvsAttr.bODEnable = RK_TRUE;
ctx->ivs.stIvsAttr.s32ODInterval = 1;
ctx->ivs.stIvsAttr.s32ODPercent = 7;
#endif
#ifdef ROCKIVA
/* Init iva */
ctx->iva.pModelDataPath = pIvaModelPath;
ctx->iva.u32ImageHeight = u32IvsWidth;
ctx->iva.u32ImageWidth = u32IvsHeight;
ctx->iva.u32DetectStartX = 0;
ctx->iva.u32DetectStartY = 0;
ctx->iva.u32DetectWidth = u32IvsWidth;
ctx->iva.u32DetectHight = u32IvsHeight;
ctx->iva.eImageTransform = ROCKIVA_IMAGE_TRANSFORM_NONE;
ctx->iva.eImageFormat = ROCKIVA_IMAGE_FORMAT_YUV420SP_NV12;
ctx->iva.eModeType = ROCKIVA_DET_MODEL_PFP;
ctx->iva.u32IvaDetectFrameRate = u32IvaDetectFrameRate;
ctx->iva.resultCallback = rkIvaEvent_callback;
ctx->iva.releaseCallback = rkIvaFrame_releaseCallBack;
#endif
/* Init VENC[0] */
ctx->venc[0].s32ChnId = 0;
ctx->venc[0].u32Width = u32VideoWidth;
ctx->venc[0].u32Height = u32VideoHeight;
ctx->venc[0].u32Fps = u32VencFps;
ctx->venc[0].u32Gop = 50;
ctx->venc[0].u32BitRate = u32BitRate;
ctx->venc[0].enCodecType = enCodecType;
ctx->venc[0].enRcMode = enRcMode;
ctx->venc[0].getStreamCbFunc = venc_get_stream;
ctx->venc[0].s32loopCount = s32LoopCnt;
ctx->venc[0].dstFilePath = pOutPathVenc;
ctx->venc[0].bWrapIfEnable = bIfWrapEnable;
ctx->venc[0].u32BufferLine = ctx->venc[0].u32Height / u32WrapLine;
if (u32VencBuffSize) {
ctx->venc[0].u32BuffSize = u32VencBuffSize;
} else {
ctx->venc[0].u32BuffSize = u32VideoWidth * u32VideoHeight / 2;
}
/*
H264 66Baseline 77Main Profile 100High Profile
H265 0Main Profile 1Main 10 Profile
MJPEG 0Baseline
*/
if (RK_CODEC_TYPE_H264 != enCodecType) {
ctx->venc[0].stChnAttr.stVencAttr.u32Profile = 0;
} else {
ctx->venc[0].stChnAttr.stVencAttr.u32Profile = 100;
}
/* VENC_GOPMODE_SMARTP */
if (bIfSmartpEnable) {
ctx->venc[0].stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_SMARTP;
ctx->venc[0].stChnAttr.stGopAttr.s32VirIdrLen = ctx->venc[0].u32Gop / 2;
} else {
ctx->venc[0].stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_NORMALP;
}
/* Init VENC[1] */
ctx->venc[1].s32ChnId = 1;
ctx->venc[1].u32Width = u32SubVideoWidth;
ctx->venc[1].u32Height = u32SubVideoHeight;
ctx->venc[1].u32Fps = u32VencFps;
ctx->venc[1].u32Gop = 50;
ctx->venc[1].enCodecType = enCodecType;
ctx->venc[1].enRcMode = enRcMode;
ctx->venc[1].getStreamCbFunc = venc_get_stream;
ctx->venc[1].s32loopCount = s32LoopCnt;
ctx->venc[1].dstFilePath = pOutPathVenc;
ctx->venc[1].bWrapIfEnable = RK_FALSE;
ctx->venc[1].u32BuffSize = u32SubVideoWidth * u32SubVideoHeight / 2;
ctx->venc[1].u32BitRate = ctx->venc[1].u32BuffSize * 8 / 1024;
/*
H264 66Baseline 77Main Profile 100High Profile
H265 0Main Profile 1Main 10 Profile
MJPEG 0Baseline
*/
if (RK_CODEC_TYPE_H264 != enCodecType) {
ctx->venc[1].stChnAttr.stVencAttr.u32Profile = 0;
} else {
ctx->venc[1].stChnAttr.stVencAttr.u32Profile = 100;
}
/* VENC_GOPMODE_SMARTP */
if (bIfSmartpEnable) {
ctx->venc[1].stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_SMARTP;
ctx->venc[1].stChnAttr.stGopAttr.s32VirIdrLen = ctx->venc[1].u32Gop / 2;
} else {
ctx->venc[1].stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_NORMALP;
}
/* Init VENC[2] */
ctx->venc[2].s32ChnId = 2;
ctx->venc[2].u32Width = u32JpegWidth;
ctx->venc[2].u32Height = u32JpegHight;
ctx->venc[2].u32Fps = 1;
ctx->venc[2].u32Gop = 50;
ctx->venc[2].u32Qfactor = 50;
ctx->venc[2].u32BitRate = u32BitRate;
ctx->venc[2].enCodecType = RK_CODEC_TYPE_JPEG;
ctx->venc[2].enRcMode = VENC_RC_MODE_MJPEGCBR;
ctx->venc[2].getStreamCbFunc = venc_get_stream;
ctx->venc[2].s32loopCount = s32LoopCnt;
ctx->venc[2].dstFilePath = pOutPathVenc;
ctx->venc[2].bWrapIfEnable = RK_FALSE;
/*
H264 66Baseline 77Main Profile 100High Profile
H265 0Main Profile 1Main 10 Profile
MJPEG 0Baseline
*/
if (RK_CODEC_TYPE_H264 != enCodecType) {
ctx->venc[2].stChnAttr.stVencAttr.u32Profile = 0;
} else {
ctx->venc[2].stChnAttr.stVencAttr.u32Profile = 100;
}
/* VENC_GOPMODE_SMARTP */
ctx->venc[2].stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_INIT;
#ifdef ROCKCOMBO
/* Init VENC[3] */
ctx->venc[3].s32ChnId = 3;
ctx->venc[3].u32Width = u32VideoWidth;
ctx->venc[3].u32Height = u32VideoHeight;
ctx->venc[3].u32Fps = u32VencFps;
ctx->venc[3].u32Gop = 50;
ctx->venc[3].u32Qfactor = 50;
ctx->venc[3].u32BitRate = u32BitRate;
ctx->venc[3].enCodecType = RK_CODEC_TYPE_JPEG;
ctx->venc[3].enRcMode = VENC_RC_MODE_MJPEGCBR;
ctx->venc[3].getStreamCbFunc = venc_get_stream;
ctx->venc[3].s32loopCount = s32LoopCnt;
ctx->venc[3].dstFilePath = pOutPathVenc;
ctx->venc[3].bWrapIfEnable = bIfWrapEnable;
ctx->venc[3].u32BufferLine = ctx->venc[3].u32Height / u32WrapLine;
ctx->venc[3].bComboIfEnable = RK_TRUE;
ctx->venc[3].u32ComboChnId = ctx->venc[0].s32ChnId;
/*
H264 66Baseline 77Main Profile 100High Profile
H265 0Main Profile 1Main 10 Profile
MJPEG 0Baseline
*/
if (RK_CODEC_TYPE_H264 != enCodecType) {
ctx->venc[3].stChnAttr.stVencAttr.u32Profile = 0;
} else {
ctx->venc[3].stChnAttr.stVencAttr.u32Profile = 100;
}
/* VENC_GOPMODE_SMARTP */
ctx->venc[3].stChnAttr.stGopAttr.enGopMode = VENC_GOPMODE_INIT;
#endif
/* tde init */
ctx->tde.u32TdeWidth = u32JpegWidth;
ctx->tde.u32TdeHeight = u32JpegHight;
ctx->tde.u32SrcWidth = ctx->vi[0].u32Width;
ctx->tde.u32SrcHeight = ctx->vi[0].u32Height;
ctx->tde.enSrcPixelFormat = ctx->vi[0].stChnAttr.enPixelFormat;
ctx->tde.enSrcCompMode = ctx->vi[0].stChnAttr.enCompressMode;
s32Ret = media_init(pIqFileDir);
if (s32Ret != RK_SUCCESS) {
RK_LOGE("media_init failure");
goto __FAILED2;
}
if (gModeTest->s32ModuleTestType) {
gModeTest->bIfModuleTestopen = RK_TRUE;
pthread_create(&modeTest_thread_id, 0, sample_demo_stresstest,
(void *)(gModeTest));
}
printf("%s initial finish\n", __func__);
while (!gModeTest->bIfMainThreadQuit) {
sleep(1);
rgn_change_posit();
}
/* mode_test_deinit */
if (gModeTest->s32ModuleTestType) {
gModeTest->bIfModuleTestThreadQuit = RK_TRUE;
pthread_join(modeTest_thread_id, RK_NULL);
}
s32Ret = media_deinit();
if (s32Ret != RK_SUCCESS) {
RK_LOGE("media_init failure");
}
__FAILED2:
global_param_deinit();
SAMPLE_COMM_CheckFd(RK_FALSE);
__PARAM_INIT_FAILED:
return g_exit_result;
}
#ifdef __cplusplus
#if __cplusplus
}
#endif
#endif /* End of #ifdef __cplusplus */