xiaoyu/media/security/librkcrypto/src/rkcrypto_rsa_helper.c

1444 lines
34 KiB
C
Raw Normal View History

2025-03-04 22:36:42 +08:00
/*
* Copyright (c) 2022 Rockchip Electronics Co. Ltd.
*/
#include <stdlib.h>
#include <string.h>
#include "rkcrypto_core.h"
#include "rkcrypto_trace.h"
#include "rkcrypto_random.h"
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
#define RSA_PKCS1_TYPE_MIN_PAD_LEN (11)
/**< Identifier for RSA signature operations. */
#define MBEDTLS_RSA_SIGN 1
/**< Identifier for RSA encryption and decryption operations. */
#define MBEDTLS_RSA_CRYPT 2
#define ASN1_INTEGER ((uint8_t)0x02)
#define ASN1_BIT_STRING ((uint8_t)0x03)
#define ASN1_OCT_STRING ((uint8_t)0x04)
#define ASN1_NULL ((uint8_t)0x05)
#define ASN1_OBJ_IDENTIFIER ((uint8_t)0x06)
#define ASN1_SEQUENCE ((uint8_t)0x30)
#define ASN1_CONTEXT0 ((uint8_t)0xA0)
#define ASN1_CONTEXT1 ((uint8_t)0xA1)
typedef struct {
const uint8_t *data; //the buffer of data
uint16_t *data_len; //valid length of data
uint8_t tag; //ASN1 data type
uint8_t need_plus; //to identify weather the data is a positive number
} asn1_object_t;
struct hash_oid_item {
uint32_t hash_algo;
const uint8_t *oid;
uint32_t oid_size;
};
static const uint8_t sha1_oid[] = {0x2b, 0x0e, 0x03, 0x02, 0x1a};
static const uint8_t sha224_oid[] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04};
static const uint8_t sha256_oid[] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01};
static const uint8_t sha384_oid[] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02};
static const uint8_t sha512_oid[] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03};
struct hash_oid_item hash_oid_tbl[] = {
{RK_ALGO_SHA1, sha1_oid, sizeof(sha1_oid)},
{RK_ALGO_SHA224, sha224_oid, sizeof(sha224_oid)},
{RK_ALGO_SHA256, sha256_oid, sizeof(sha256_oid)},
{RK_ALGO_SHA384, sha384_oid, sizeof(sha384_oid)},
{RK_ALGO_SHA512, sha512_oid, sizeof(sha512_oid)},
};
static RK_RES get_oid_by_md(uint32_t hash_algo, const uint8_t **oid, uint32_t *old_len)
{
uint32_t i;
for (i = 0; i < ARRAY_SIZE(hash_oid_tbl); i++) {
if (hash_oid_tbl[i].hash_algo == hash_algo) {
*oid = hash_oid_tbl[i].oid;
*old_len = hash_oid_tbl[i].oid_size;
return RK_CRYPTO_SUCCESS;
}
}
return RK_CRYPTO_ERR_PARAMETER;
}
static RK_RES asn1_compose_len(uint32_t len, uint8_t *field, uint32_t *field_len)
{
uint8_t tmp_field[4];
if (field == NULL || field_len == NULL)
return RK_CRYPTO_ERR_PARAMETER;
if (len < 0x80) {
*field = len;
*field_len = 1;
} else {
uint32_t i, j;
tmp_field[0] = (len >> 24) & 0xff;
tmp_field[1] = (len >> 16) & 0xff;
tmp_field[2] = (len >> 8) & 0xff;
tmp_field[3] = len & 0xff;
for (i = 0; i < sizeof(tmp_field); i++) {
if (tmp_field[i] == 0x00)
continue;
for (j = 0; j < sizeof(tmp_field) - i; j++)
field[j + 1] = tmp_field[j + i];
break;
}
field[0] = 0X80 + sizeof(tmp_field) - i;
*field_len = sizeof(tmp_field) - i + 1;
}
return RK_CRYPTO_SUCCESS;
}
static RK_RES asn1_set_object(const uint8_t *in, uint32_t in_len, uint8_t tag, uint8_t need_plus,
uint8_t *out, uint32_t out_max, uint32_t *out_len)
{
RK_RES res;
uint8_t *pout = out;
uint32_t field_len;
uint8_t tmp_field[5];
if (in == NULL || out == NULL || out_len == NULL)
return RK_CRYPTO_ERR_PARAMETER;
*out_len = 0;
//padding tag field
if (out_max < 1) {
res = RK_CRYPTO_ERR_OUT_OF_MEMORY;
goto exit;
}
*pout = tag;
pout++;
out_max--;
//padding length field
if (need_plus && *in >= 0x80)
res = asn1_compose_len(in_len + 1, tmp_field, &field_len);
else
res = asn1_compose_len(in_len, tmp_field, &field_len);
if (res != RK_CRYPTO_SUCCESS) {
D_TRACE("asn1_compose_len error");
return res;
}
if (out_max < field_len) {
D_TRACE("out_max = %d, field_len = %d", out_max, field_len);
res = RK_CRYPTO_ERR_OUT_OF_MEMORY;
goto exit;
}
memmove(pout, tmp_field, field_len);
pout += field_len;
out_max -= field_len;
//padding value field
if (need_plus && *in >= 0x80) {
if (out_max < 1) {
res = RK_CRYPTO_ERR_OUT_OF_MEMORY;
goto exit;
}
*pout = 0x00;
pout++;
out_max--;
}
if (out_max < in_len) {
res = RK_CRYPTO_ERR_OUT_OF_MEMORY;
goto exit;
}
memmove(pout, in, in_len);
pout += in_len;
*out_len = pout-out;
exit:
return res;
}
/* PKCS #1: block type 0,1,2 message padding */
/*************************************************
*EB = 00 || BT || PS || 00 || D
*
*PS_LEN >= 8, mlen < key_len - 11
************************************************/
static RK_RES rsa_padding_add_pkcs1_type(uint16_t key_len, uint8_t bt,
const uint8_t *in, uint8_t in_len, uint8_t *out)
{
uint32_t plen = 0;
uint8_t *peb = NULL;
if (in_len > key_len - RSA_PKCS1_TYPE_MIN_PAD_LEN) {
E_TRACE("key_len is invalid.\n");
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
}
/* block type 0 first input data can't be zero */
if (bt == 0x00 && *in == 0)
return RK_CRYPTO_ERR_PADDING;
peb = out;
/* first byte is 0x00 */
*(peb++) = 0;
/* Private Key BT (Block Type) */
*(peb++) = bt;
/* The padding string PS shall consist of k-3-||D|| octets */
plen = key_len - 3 - in_len;
switch (bt) {
case 0x00: {
/* For block type 00, the octets shall have value 00 */
memset(peb, 0x00, plen);
break;
}
case 0x01: {
/* for block type 01, they shall have value FF */
memset(peb, 0xFF, plen);
break;
}
case 0x02: {
RK_RES res;
uint32_t i = 0;
/* for block type 02, they shall be pseudorandomly generated and nonzero. */
res = rk_get_random(peb, plen);
if (res)
return res;
/* make sure nonzero */
for (i = 0; i < plen; i++) {
if (peb[i] == 0x00)
peb[i] = 0x01;
}
break;
}
default: {
E_TRACE("BT(0x%x) is invalid.\n", plen);
return RK_CRYPTO_ERR_PADDING;
}
}
/* skip the padding string */
peb += plen;
/* set 0x00 follow PS */
*(peb++) = 0x00;
/* input data */
memcpy(peb, in, in_len);
return RK_CRYPTO_SUCCESS;
}
/* PKCS #1: block type 0,1,2 message padding */
/*************************************************
* EB = 00 || BT || PS || 00 || D
*
*PS_LEN >= 8, mlen < key_len - 11
*************************************************/
static RK_RES rsa_padding_check_pkcs1_type(uint32_t key_len, uint8_t bt,
const uint8_t *in, uint8_t *out, uint32_t *outlen)
{
const uint8_t *peb = NULL;
uint32_t inlen = key_len;
*outlen = 0x00;
peb = in;
/* first byte must be 0x00 */
if (*peb != 0x00) {
E_TRACE("EB[0] != 0x00.\n");
goto error;
}
peb++;
/* Private Key BT (Block Type) */
if (*peb != bt) {
E_TRACE("EB[1] != BT(0x%x).\n", bt);
goto error;
}
peb++;
switch (bt) {
case 0x00:
/* For block type 00, the octets shall have value 00 */
for (; peb < in + inlen - 1; peb++) {
if ((*peb == 0x00) && (*(peb + 1) != 0))
break;
}
break;
case 0x01:
/* For block type 0x01 the octets shall have value 0xFF */
for (; peb < in + inlen - 1; peb++) {
if (*peb == 0xFF)
continue;
if (*peb == 0x00)
break;
peb = in + inlen - 1;
break;
}
break;
case 0x02:
/* for block type 02, they shall be pseudorandomly generated and nonzero. */
for (; peb < in + inlen - 1; peb++) {
if (*peb == 0x00)
break;
}
break;
default:
E_TRACE("BT(0x%x) is invalid.\n", bt);
goto error;
}
if (peb >= (in + inlen - 1)) {
E_TRACE("PS Error.\n");
goto error;
}
/* skip 0x00 after PS */
peb++;
/* get payload data */
*outlen = in + key_len - peb;
memcpy(out, peb, *outlen);
return RK_CRYPTO_SUCCESS;
error:
return RK_CRYPTO_ERR_PADDING;
}
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
* 00 (01/02) [a bunch of non-zero random bytes] 00 [the message]
*/
RK_RES rsa_padding_add_pkcs15_type(uint16_t key_len, bool is_priv_key,
const uint8_t *in, uint32_t in_len, uint8_t *out)
{
uint32_t nb_pad, olen;
RK_RES res;
uint8_t *p = out;
// We don't check p_rng because it won't be dereferenced here
if (in == NULL || out == NULL)
return RK_CRYPTO_ERR_PADDING;
olen = key_len;
/* first comparison checks for overflow */
if (in_len + 11 < in_len || olen < in_len + 11)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
nb_pad = olen - 3 - in_len;
*p++ = 0;
if (!is_priv_key) {
*p++ = MBEDTLS_RSA_CRYPT;
while (nb_pad-- > 0) {
int rng_dl = 100;
do {
res = rk_get_random(p, 1);
} while (*p == 0 && --rng_dl && res == 0);
/* Check if RNG failed to generate data */
if (rng_dl == 0 || res != 0)
return RK_CRYPTO_ERR_PADDING;
p++;
}
} else {
*p++ = MBEDTLS_RSA_SIGN;
while (nb_pad-- > 0)
*p++ = 0xFF;
}
*p++ = 0;
memcpy(p, in, in_len);
return RK_CRYPTO_SUCCESS;
}
/*
* Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
*/
static RK_RES rsa_padding_check_pkcs15_type(uint16_t key_len, bool is_priv_key,
const uint8_t *in, uint8_t *out, uint32_t *out_len)
{
uint32_t ilen, pad_count = 0, i;
const uint8_t *p;
uint8_t bad, pad_done = 0;
ilen = key_len;
p = in;
bad = 0;
/*
* Check and get padding len in "constant-time"
*/
bad |= *p++; /* First byte must be 0 */
/* This test does not depend on secret data */
if (is_priv_key) {
bad |= *p++ ^ MBEDTLS_RSA_CRYPT;
/* Get padding len, but always read till end of buffer
* (minus one, for the 00 byte)
*/
for (i = 0; i < ilen - 3; i++) {
pad_done |= ((p[i] | (uint8_t)-p[i]) >> 7) ^ 1;
pad_count += ((pad_done | (uint8_t)-pad_done) >> 7) ^ 1;
}
p += pad_count;
bad |= *p++; /* Must be zero */
} else {
bad |= *p++ ^ MBEDTLS_RSA_SIGN;
/* Get padding len, but always read till end of buffer
* (minus one, for the 00 byte)
*/
for (i = 0; i < ilen - 3; i++) {
pad_done |= (p[i] != 0xFF);
pad_count += (pad_done == 0);
}
p += pad_count;
bad |= *p++; /* Must be zero */
}
bad |= (pad_count < 8);
if (bad)
return RK_CRYPTO_ERR_PADDING;
*out_len = ilen - (p - in);
memcpy(out, p, *out_len);
return RK_CRYPTO_SUCCESS;
}
static RK_RES get_hash_algo_from_padding(uint32_t padding,
uint32_t *hlen, uint32_t *hash_algo)
{
uint32_t shaalgo = RK_ALGO_SHA1;
switch (padding) {
case RK_RSA_CRYPT_PADDING_OAEP_SHA1:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA1:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA1:
*hlen = SHA1_HASH_SIZE;
shaalgo = RK_ALGO_SHA1;
break;
case RK_RSA_CRYPT_PADDING_OAEP_SHA224:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA224:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA224:
*hlen = SHA224_HASH_SIZE;
shaalgo = RK_ALGO_SHA224;
break;
case RK_RSA_CRYPT_PADDING_OAEP_SHA256:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA256:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA256:
*hlen = SHA256_HASH_SIZE;
shaalgo = RK_ALGO_SHA256;
break;
case RK_RSA_CRYPT_PADDING_OAEP_SHA384:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA384:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA384:
*hlen = SHA384_HASH_SIZE;
shaalgo = RK_ALGO_SHA384;
break;
case RK_RSA_CRYPT_PADDING_OAEP_SHA512:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA512:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA512:
*hlen = SHA512_HASH_SIZE;
shaalgo = RK_ALGO_SHA512;
break;
default:
D_TRACE("unknown padding %x", padding);
*hlen = 0;
shaalgo = 0;
return RK_CRYPTO_ERR_PADDING;
}
*hash_algo = shaalgo;
return RK_CRYPTO_SUCCESS;
}
static RK_RES calc_padding_digest(uint32_t algo, const uint8_t *data, uint32_t data_len,
uint8_t *digest)
{
RK_RES res;
rk_hash_config hash_cfg;
rk_handle hash_hdl = 0;
memset(&hash_cfg, 0x00, sizeof(hash_cfg));
hash_cfg.algo = algo;
res = rk_hash_init(&hash_cfg, &hash_hdl);
if (res)
goto exit;
if (data && data_len != 0) {
res = rk_hash_update_virt(hash_hdl, data, data_len);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto exit;
}
}
res = rk_hash_final(hash_hdl, digest);
exit:
if (res)
D_TRACE("digest error.");
return res;
}
/**
* Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
*
* \param dst buffer to mask
* \param dlen length of destination buffer
* \param src source of the mask generation
* \param slen length of the source buffer
* \param md_ctx message digest context to use
*/
static RK_RES mgf_mask(uint8_t *dst, uint32_t dlen, uint8_t *src, uint32_t slen,
uint32_t hash_algo, uint32_t hash_len)
{
uint8_t mask[SHA512_HASH_SIZE];
uint8_t counter[4];
uint8_t *p;
uint32_t i, use_len;
RK_RES res = 0;
rk_handle hash_hdl;
rk_hash_config hash_cfg;
memset(&hash_cfg, 0x00, sizeof(hash_cfg));
hash_cfg.algo = hash_algo;
memset(mask, 0, sizeof(mask));
memset(counter, 0, sizeof(counter));
/* Generate and apply dbMask */
p = dst;
while (dlen > 0) {
use_len = hash_len;
if (dlen < hash_len)
use_len = dlen;
res = rk_hash_init(&hash_cfg, &hash_hdl);
if (res)
goto cleanup;
res = rk_hash_update_virt(hash_hdl, src, slen);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto cleanup;
}
res = rk_hash_update_virt(hash_hdl, counter, 4);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto cleanup;
}
res = rk_hash_final(hash_hdl, mask);
if (res)
goto cleanup;
for (i = 0; i < use_len; ++i)
*p++ ^= mask[i];
counter[3]++;
dlen -= use_len;
}
cleanup:
memset(mask, 0x00, sizeof(mask));
return res;
}
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
*/
static RK_RES rsa_padding_add_oaep_type(enum RK_RSA_CRYPT_PADDING padding, uint16_t key_len,
const uint8_t *label, uint32_t label_len,
const uint8_t *in, uint32_t in_len, uint8_t *out)
{
uint32_t olen;
RK_RES res;
uint8_t *p = out;
uint32_t hlen;
uint32_t hash_algo;
RK_CRYPTO_CHECK_PARAM(!out);
RK_CRYPTO_CHECK_PARAM(!in);
RK_CRYPTO_CHECK_PARAM(label_len != 0 || label);
olen = key_len;
res = get_hash_algo_from_padding(padding, &hlen, &hash_algo);
if (res)
goto error;
/* first comparison checks for overflow */
if (in_len + 2 * hlen + 2 < in_len || olen < in_len + 2 * hlen + 2) {
res = RK_CRYPTO_ERR_PADDING_OVERFLOW;
goto error;
}
memset(out, 0, olen);
*p++ = 0;
/* Generate a random octet string seed */
res = rk_get_random(p, hlen);
if (res)
goto error;
p += hlen;
/* Construct DB */
res = calc_padding_digest(hash_algo, label, label_len, p);
if (res)
goto error;
p += hlen;
p += olen - 2 * hlen - 2 - in_len;
*p++ = 1;
memcpy(p, in, in_len);
/* maskedDB: Apply dbMask to DB */
res = mgf_mask(out + hlen + 1, olen - hlen - 1, out + 1, hlen, hash_algo, hlen);
if (res)
goto error;
/* maskedSeed: Apply seedMask to seed */
res = mgf_mask(out + 1, hlen, out + hlen + 1, olen - hlen - 1, hash_algo, hlen);
if (res)
goto error;
return RK_CRYPTO_SUCCESS;
error:
return res;
}
/*
* Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
*/
RK_RES rsa_padding_check_oaep_type(enum RK_RSA_CRYPT_PADDING padding, uint16_t key_len,
const uint8_t *label, size_t label_len,
const uint8_t *in, uint8_t *out, uint32_t *out_len)
{
RK_RES res = RK_CRYPTO_ERR_PADDING;
uint32_t ilen, i, pad_len;
uint8_t *p, bad, pad_done;
uint8_t *buf = NULL;
uint8_t lhash[SHA512_HASH_SIZE];
uint32_t hlen;
uint32_t hash_algo;
ilen = key_len;
res = get_hash_algo_from_padding(padding, &hlen, &hash_algo);
if (res)
return res;
buf = malloc(ilen);
if (!buf)
return RK_CRYPTO_ERR_OUT_OF_MEMORY;
memcpy(buf, in, ilen);
// checking for integer underflow
if (2 * hlen + 2 > ilen) {
res = RK_CRYPTO_ERR_PADDING;
goto exit;
}
/*
* Unmask data and generate lHash
*/
res = calc_padding_digest(hash_algo, label, label_len, lhash);
if (res)
goto exit;
/* seed: Apply seedMask to maskedSeed */
res = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, hash_algo, hlen);
if (res)
goto exit;
/* DB: Apply dbMask to maskedDB */
res = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, hash_algo, hlen);
if (res)
goto exit;
/*
* Check contents, in "constant-time"
*/
p = buf;
bad = 0;
bad |= *p++; /* First byte must be 0 */
p += hlen; /* Skip seed */
/* Check lHash */
for (i = 0; i < hlen; i++)
bad |= lhash[i] ^ *p++;
/* Get zero-padding len, but always read till end of buffer
* (minus one, for the 01 byte)
*/
pad_len = 0;
pad_done = 0;
for (i = 0; i < ilen - 2 * hlen - 2; i++) {
pad_done |= p[i];
pad_len += ((pad_done | (uint8_t)-pad_done) >> 7) ^ 1;
}
p += pad_len;
bad |= *p++ ^ 0x01;
/*
* The only information "leaked" is whether the padding was correct or not
* (eg, no data is copied if it was not correct). This meets the
* recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
* the different error conditions.
*/
if (bad != 0) {
res = RK_CRYPTO_ERR_PADDING;
goto exit;
}
if (ilen - (p - buf) > key_len) {
res = RK_CRYPTO_ERR_PADDING;
goto exit;
}
*out_len = ilen - (p - buf);
memcpy(out, p, *out_len);
res = RK_CRYPTO_SUCCESS;
exit:
if (buf)
free(buf);
return res;
}
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
* Construct a PKCS v1.5 encoding of a hashed message
*/
static int rsa_padding_add_pkcs15_sign_type(uint32_t hash_algo, uint16_t key_len,
const uint8_t *hash, uint8_t hash_len, uint8_t *out)
{
RK_RES res;
uint32_t oid_size = 0;
uint32_t nb_pad = key_len;
uint8_t *p = out;
const uint8_t *oid = NULL;
/* Gather length of hash to sign */
res = get_oid_by_md(hash_algo, &oid, &oid_size);
if (res)
return RK_CRYPTO_ERR_PADDING;
/* Double-check that 8 + hash_len + oid_size can be used as a
* 1-byte ASN.1 length encoding and that there's no overflow.
*/
if (8 + hash_len + oid_size >= 0x80 ||
10 + hash_len < hash_len ||
10 + hash_len + oid_size < 10 + hash_len)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
/*
* Static bounds check:
* - Need 10 bytes for five tag-length pairs.
* (Insist on 1-byte length encodings to protect against variants of
* Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
* - Need hash_len bytes for hash
* - Need oid_size bytes for hash alg OID.
*/
if (nb_pad < 10 + hash_len + oid_size)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
nb_pad -= 10 + hash_len + oid_size;
/* Need space for signature header and padding delimiter (3 bytes),
* and 8 bytes for the minimal padding
*/
if (nb_pad < 3 + 8)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
nb_pad -= 3;
/* Now nb_pad is the amount of memory to be filled
* with padding, and at least 8 bytes long.
*/
/* Write signature header and padding */
*p++ = 0;
*p++ = MBEDTLS_RSA_SIGN;
memset(p, 0xFF, nb_pad);
p += nb_pad;
*p++ = 0;
/* Signing hashed data, add corresponding ASN.1 structure
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest }
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
* Digest ::= OCTET STRING
*
* Schematic:
* TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ]
* TAG-NULL + LEN [ NULL ] ]
* TAG-OCTET + LEN [ HASH ] ]
*/
*p++ = ASN1_SEQUENCE;
*p++ = (uint8_t)(0x08 + oid_size + hash_len);
*p++ = ASN1_SEQUENCE;
*p++ = (uint8_t)(0x04 + oid_size);
*p++ = ASN1_OBJ_IDENTIFIER;
*p++ = (uint8_t)oid_size;
memcpy(p, oid, oid_size);
p += oid_size;
*p++ = ASN1_NULL;
*p++ = 0x00;
*p++ = ASN1_OCT_STRING;
*p++ = (uint8_t)hash_len;
memcpy(p, hash, hash_len);
p += hash_len;
return RK_CRYPTO_SUCCESS;
}
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
*/
RK_RES rsa_padding_add_pss_type(uint16_t key_len, uint16_t n_bits,
uint32_t hash_algo, const uint8_t *hash,
uint32_t hash_len, uint8_t *out)
{
uint32_t olen;
uint8_t *p = out;
uint8_t salt[SHA512_HASH_SIZE];
uint32_t slen, hlen, min_slen, offset = 0;
RK_RES res;
uint32_t msb, ps_len;
rk_hash_config hash_cfg;
rk_handle hash_hdl;
olen = key_len;
hlen = hash_len;
slen = hlen;
/* Calculate the largest possible salt length. Normally this is the hash
* length, which is the maximum length the salt can have. If there is not
* enough room, use the maximum salt length that fits. The constraint is
* that the hash length plus the salt length plus 2 bytes must be at most
* the key length. This complies with FIPS 186-4.5.5 (e) and RFC 8017
* (PKCS#1 v2.2) 9.1.1 step 3.
*/
min_slen = hlen - 2;
if (olen < hlen + min_slen + 2)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
else if (olen >= hlen + hlen + 2)
slen = hlen;
else
slen = olen - hlen - 2;
if (olen < hlen * 2 + 2)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
ps_len = olen - hlen * 2 - 2;
if (olen < ps_len + 1 + slen + hlen)
return RK_CRYPTO_ERR_PADDING_OVERFLOW;
memset(out, 0, olen);
/* Generate salt of length slen */
res = rk_get_random(salt, slen);
if (res)
return res;
/* Note: EMSA-PSS encoding is over the length of N - 1 bits */
msb = n_bits - 1;
p += ps_len;
*p++ = 0x01;
memcpy(p, salt, slen);
p += slen;
/* Generate H = Hash( M' ) */
memset(&hash_cfg, 0x00, sizeof(hash_cfg));
hash_cfg.algo = hash_algo;
res = rk_hash_init(&hash_cfg, &hash_hdl);
if (res)
goto exit;
res = rk_hash_update_virt(hash_hdl, p, 8);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto exit;
}
res = rk_hash_update_virt(hash_hdl, hash, hash_len);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto exit;
}
res = rk_hash_update_virt(hash_hdl, salt, slen);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto exit;
}
res = rk_hash_final(hash_hdl, p);
if (res)
goto exit;
/* Compensate for boundary condition when applying mask */
if (msb % 8 == 0)
offset = 1;
/* maskedDB: Apply dbMask to DB */
res = mgf_mask(out + offset, olen - hlen - 1 - offset, p, hlen, hash_algo, hash_len);
if (res)
goto exit;
msb = n_bits - 1;
out[0] &= 0xFF >> (olen * 8 - msb);
p += hlen;
*p++ = 0xBC;
exit:
return res;
}
/*
* Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
*/
RK_RES rk_rsa_padding_check_pss_type(uint16_t key_len, uint16_t n_bits,
uint32_t hash_algo, uint32_t hash_len,
const uint8_t *hash, const uint8_t *dec)
{
RK_RES res = RK_CRYPTO_ERR_PADDING;
uint32_t siglen;
uint8_t *p;
uint8_t *buf = NULL;
uint8_t result[SHA512_HASH_SIZE];
uint8_t zeros[8];
uint32_t hlen;
uint32_t slen, msb;
rk_hash_config hash_cfg;
rk_handle hash_hdl;
buf = malloc(key_len);
if (!buf)
return RK_CRYPTO_ERR_OUT_OF_MEMORY;
memcpy(buf, dec, key_len);
siglen = key_len;
if (siglen < 16) {
res = RK_CRYPTO_ERR_PADDING;
goto error;
}
p = buf;
if (buf[siglen - 1] != 0xBC) {
res = RK_CRYPTO_ERR_PADDING;
goto error;
}
hlen = hash_len;
slen = siglen - hlen - 1; /* Currently length of salt + padding */
memset(zeros, 0, 8);
/*
* Note: EMSA-PSS verification is over the length of N - 1 bits
*/
msb = n_bits - 1;
/* Compensate for boundary condition when applying mask */
if (msb % 8 == 0) {
p++;
siglen -= 1;
}
if (buf[0] >> (8 - siglen * 8 + msb)) {
res = RK_CRYPTO_ERR_PADDING;
goto error;
}
res = mgf_mask(p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, hash_algo, hash_len);
if (res)
goto error;
buf[0] &= 0xFF >> (siglen * 8 - msb);
while (p < buf + siglen && *p == 0)
p++;
if (p == buf + siglen || *p++ != 0x01) {
res = RK_CRYPTO_ERR_PADDING;
goto error;
}
/* Actual salt len */
slen -= p - buf;
/*
* Generate H = Hash( M' )
*/
memset(&hash_cfg, 0x00, sizeof(hash_cfg));
hash_cfg.algo = hash_algo;
res = rk_hash_init(&hash_cfg, &hash_hdl);
if (res)
goto error;
res = rk_hash_update_virt(hash_hdl, zeros, 8);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto error;
}
res = rk_hash_update_virt(hash_hdl, hash, hash_len);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto error;
}
res = rk_hash_update_virt(hash_hdl, p, slen);
if (res) {
rk_hash_final(hash_hdl, NULL);
goto error;
}
res = rk_hash_final(hash_hdl, result);
if (res)
goto error;
free(buf);
if (memcmp(p + slen, result, hlen) == 0)
return RK_CRYPTO_SUCCESS;
else
return RK_CRYPTO_ERR_VERIFY;
error:
if (buf)
free(buf);
return RK_CRYPTO_ERR_PADDING;
}
RK_RES rk_rsa_pubkey_encode(rk_rsa_pub_key_pack *pub,
uint8_t *asn1_key, uint16_t *asn1_key_len, uint16_t *key_bits)
{
RK_RES res;
rk_rsa_pub_key *rsa_key = &pub->key;
uint8_t tmp_field[8];
uint32_t total_len = 0, tmp_len = 0, out_max;
RK_CRYPTO_CHECK_PARAM(!asn1_key || !asn1_key_len || !pub || !key_bits);
RK_CRYPTO_CHECK_PARAM(!rsa_key->n || rsa_key->n_len == 0);
RK_CRYPTO_CHECK_PARAM(!rsa_key->e || rsa_key->e_len == 0);
RK_CRYPTO_CHECK_PARAM(rsa_key->n_len != 1024 / 8 &&
rsa_key->n_len != 2048 / 8 &&
rsa_key->n_len != 3072 / 8 &&
rsa_key->n_len != 4096 / 8);
RK_CRYPTO_CHECK_PARAM(pub->key_type != RK_RSA_KEY_TYPE_PLAIN);
out_max = *asn1_key_len;
//padding n
res = asn1_set_object(rsa_key->n, rsa_key->n_len, ASN1_INTEGER, 1,
asn1_key + total_len, out_max, &tmp_len);
if (res != RK_CRYPTO_SUCCESS) {
D_TRACE("set rsa_key->n object error!");
goto exit;
}
total_len += tmp_len;
out_max -= tmp_len;
//padding e
res = asn1_set_object(rsa_key->e, rsa_key->e_len, ASN1_INTEGER, 0,
asn1_key + total_len, out_max, &tmp_len);
if (res != RK_CRYPTO_SUCCESS) {
D_TRACE("set rsa_key->e object error!");
goto exit;
}
total_len += tmp_len;
out_max -= tmp_len;
//add SEQUENCE info in head
res = asn1_compose_len(total_len, tmp_field, &tmp_len);
if (res != RK_CRYPTO_SUCCESS) {
D_TRACE("set asn1_compose_len error!");
goto exit;
}
if (out_max < tmp_len + 1) {
res = RK_CRYPTO_ERR_OUT_OF_MEMORY;
goto exit;
}
memmove(asn1_key + tmp_len + 1, asn1_key, total_len);
*asn1_key = ASN1_SEQUENCE;
total_len++;
memmove(asn1_key + 1, tmp_field, tmp_len);
total_len += tmp_len;
*asn1_key_len = total_len;
*key_bits = rsa_key->n_len * 8;
exit:
return res;
}
RK_RES rk_rsa_privkey_encode(rk_rsa_priv_key_pack *priv,
uint8_t *asn1_key, uint16_t *asn1_key_len, uint16_t *key_bits)
{
RK_RES res;
uint8_t *empty_data = NULL;
uint8_t tmp_field[5];
uint32_t total_len = 0, tmp_len = 0;
uint8_t version[1] = {0};
uint16_t ver_len = 1;
rk_rsa_priv_key *rsa_key = &priv->key;
uint32_t i, out_max, empty_data_len;
asn1_object_t object_list[] = {
{version, &ver_len, ASN1_INTEGER, 0},
{rsa_key->n, &rsa_key->n_len, ASN1_INTEGER, 1},
{rsa_key->e, &rsa_key->e_len, ASN1_INTEGER, 0},
{rsa_key->d, &rsa_key->d_len, ASN1_INTEGER, 1},
{rsa_key->p, &rsa_key->p_len, ASN1_INTEGER, 1},
{rsa_key->q, &rsa_key->q_len, ASN1_INTEGER, 1},
{rsa_key->dp, &rsa_key->dp_len, ASN1_INTEGER, 1},
{rsa_key->dq, &rsa_key->dq_len, ASN1_INTEGER, 1},
{rsa_key->qp, &rsa_key->qp_len, ASN1_INTEGER, 1},
};
RK_CRYPTO_CHECK_PARAM(!asn1_key || !asn1_key_len || !priv || !key_bits);
RK_CRYPTO_CHECK_PARAM(!rsa_key->n || rsa_key->n_len == 0);
RK_CRYPTO_CHECK_PARAM(!rsa_key->e || rsa_key->e_len == 0);
RK_CRYPTO_CHECK_PARAM(rsa_key->n_len != 1024 / 8 &&
rsa_key->n_len != 2048 / 8 &&
rsa_key->n_len != 3072 / 8 &&
rsa_key->n_len != 4096 / 8);
RK_CRYPTO_CHECK_PARAM(!rsa_key->d || rsa_key->d_len == 0);
RK_CRYPTO_CHECK_PARAM(rsa_key->n_len != rsa_key->d_len);
RK_CRYPTO_CHECK_PARAM(priv->key_type != RK_RSA_KEY_TYPE_PLAIN);
out_max = *asn1_key_len;
empty_data_len = rsa_key->n_len / 2;
empty_data = malloc(empty_data_len);
if (!empty_data)
return RK_CRYPTO_ERR_OUT_OF_MEMORY;
memset(empty_data, 0xff, empty_data_len);
for (i = 0; i < ARRAY_SIZE(object_list); i++) {
const uint8_t *data = object_list[i].data;
uint32_t data_len = *(object_list[i].data_len);
data = data ? data : empty_data;
data_len = data ? data_len : empty_data_len;
res = asn1_set_object(data, data_len,
object_list[i].tag,
object_list[i].need_plus,
asn1_key + total_len, out_max, &tmp_len);
if (res != RK_CRYPTO_SUCCESS) {
D_TRACE("set %d object error!", i);
goto exit;
}
total_len += tmp_len;
out_max -= tmp_len;
}
res = asn1_compose_len(total_len, tmp_field, &tmp_len);
if (res != RK_CRYPTO_SUCCESS) {
D_TRACE("set asn1_compose_len error!");
goto exit;
}
if (out_max < tmp_len + 1) {
res = RK_CRYPTO_ERR_OUT_OF_MEMORY;
goto exit;
}
memmove(asn1_key + tmp_len + 1, asn1_key, total_len);
*asn1_key = ASN1_SEQUENCE;
total_len++;
memmove(asn1_key + 1, tmp_field, tmp_len);
total_len += tmp_len;
*asn1_key_len = total_len;
*key_bits = rsa_key->n_len * 8;
exit:
if (empty_data)
free(empty_data);
return res;
}
RK_RES rk_rsa_crypt_do_padding(enum RK_RSA_CRYPT_PADDING padding,
uint16_t key_len, bool is_priv_key,
const uint8_t *data, uint32_t data_len,
uint8_t *pad, uint32_t *pad_len)
{
RK_RES res = RK_CRYPTO_SUCCESS;
RK_CRYPTO_CHECK_PARAM(key_len * 8 != RSA_BITS_1024 &&
key_len * 8 != RSA_BITS_2048 &&
key_len * 8 != RSA_BITS_3072 &&
key_len * 8 != RSA_BITS_4096);
switch (padding) {
case RK_RSA_CRYPT_PADDING_NONE:
if (data_len != key_len) {
D_TRACE("length not match %u != %u", data_len, key_len);
return RK_CRYPTO_ERR_PARAMETER;
}
memcpy(pad, data, data_len);
break;
case RK_RSA_CRYPT_PADDING_BLOCK_TYPE_0:
case RK_RSA_CRYPT_PADDING_BLOCK_TYPE_1:
case RK_RSA_CRYPT_PADDING_BLOCK_TYPE_2: {
uint8_t bt = (uint8_t)(padding - RK_RSA_CRYPT_PADDING_BLOCK_TYPE_0);
res = rsa_padding_add_pkcs1_type(key_len, bt, data, data_len, pad);
break;
}
case RK_RSA_CRYPT_PADDING_OAEP_SHA1:
case RK_RSA_CRYPT_PADDING_OAEP_SHA224:
case RK_RSA_CRYPT_PADDING_OAEP_SHA256:
case RK_RSA_CRYPT_PADDING_OAEP_SHA384:
case RK_RSA_CRYPT_PADDING_OAEP_SHA512:
res = rsa_padding_add_oaep_type(padding, key_len, NULL, 0, data, data_len, pad);
break;
case RK_RSA_CRYPT_PADDING_PKCS1_V1_5:
res = rsa_padding_add_pkcs15_type(key_len, is_priv_key, data, data_len, pad);
break;
default:
D_TRACE("unknown padding %d", padding);
res = RK_CRYPTO_ERR_PARAMETER;
break;
}
*pad_len = key_len;
return res;
}
RK_RES rk_rsa_crypt_undo_padding(enum RK_RSA_CRYPT_PADDING padding,
uint16_t key_len, bool is_priv_key,
const uint8_t *pad, uint32_t pad_len,
uint8_t *data, uint32_t *data_len)
{
RK_RES res = RK_CRYPTO_SUCCESS;
RK_CRYPTO_CHECK_PARAM(key_len * 8 != RSA_BITS_1024 &&
key_len * 8 != RSA_BITS_2048 &&
key_len * 8 != RSA_BITS_3072 &&
key_len * 8 != RSA_BITS_4096);
RK_CRYPTO_CHECK_PARAM(key_len != pad_len);
switch (padding) {
case RK_RSA_CRYPT_PADDING_NONE:
if (pad_len != key_len) {
D_TRACE("length not match %u != %u", pad_len, key_len);
return RK_CRYPTO_ERR_PARAMETER;
}
memcpy(data, pad, pad_len);
*data_len = key_len;
break;
case RK_RSA_CRYPT_PADDING_BLOCK_TYPE_0:
case RK_RSA_CRYPT_PADDING_BLOCK_TYPE_1:
case RK_RSA_CRYPT_PADDING_BLOCK_TYPE_2: {
uint8_t bt = (uint8_t)(padding - RK_RSA_CRYPT_PADDING_BLOCK_TYPE_0);
res = rsa_padding_check_pkcs1_type(key_len, bt, pad, data, data_len);
break;
}
case RK_RSA_CRYPT_PADDING_OAEP_SHA1:
case RK_RSA_CRYPT_PADDING_OAEP_SHA224:
case RK_RSA_CRYPT_PADDING_OAEP_SHA256:
case RK_RSA_CRYPT_PADDING_OAEP_SHA384:
case RK_RSA_CRYPT_PADDING_OAEP_SHA512:
res = rsa_padding_check_oaep_type(padding, key_len, NULL, 0, pad, data, data_len);
break;
case RK_RSA_CRYPT_PADDING_PKCS1_V1_5:
res = rsa_padding_check_pkcs15_type(key_len, is_priv_key, pad, data, data_len);
break;
default:
D_TRACE("unknown padding %d", padding);
res = RK_CRYPTO_ERR_PARAMETER;
break;
}
return res;
}
RK_RES rk_rsa_sign_do_padding(enum RK_RSA_SIGN_PADDING padding, uint16_t key_len, uint16_t n_bits,
const uint8_t *data, uint32_t data_len, const uint8_t *hash,
uint8_t *pad, uint32_t *pad_len)
{
RK_RES res = RK_CRYPTO_SUCCESS;
uint32_t hash_len, hash_algo;
uint8_t tmp_hash[SHA512_HASH_SIZE];
res = get_hash_algo_from_padding(padding, &hash_len, &hash_algo);
if (res)
return res;
memset(tmp_hash, 0x00, sizeof(tmp_hash));
if (hash) {
memcpy(tmp_hash, hash, hash_len);
} else {
res = calc_padding_digest(hash_algo, data, data_len, tmp_hash);
if (res)
return res;
}
switch (padding) {
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA1:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA224:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA256:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA384:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA512:
res = rsa_padding_add_pkcs15_sign_type(hash_algo, key_len, tmp_hash, hash_len, pad);
break;
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA1:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA224:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA256:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA384:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA512:
res = rsa_padding_add_pss_type(key_len, n_bits, hash_algo, tmp_hash, hash_len, pad);
break;
default:
D_TRACE("unknown padding %d", padding);
res = RK_CRYPTO_ERR_PARAMETER;
break;
}
*pad_len = key_len;
return res;
}
RK_RES rk_rsa_sign_undo_padding(enum RK_RSA_SIGN_PADDING padding, uint16_t key_len, uint16_t n_bits,
const uint8_t *data, uint32_t data_len,
const uint8_t *hash, const uint8_t *dec)
{
RK_RES res = RK_CRYPTO_SUCCESS;
uint32_t hash_len, hash_algo;
uint8_t tmp_hash[SHA512_HASH_SIZE];
uint8_t *pad = NULL;
res = get_hash_algo_from_padding(padding, &hash_len, &hash_algo);
if (res)
return res;
memset(tmp_hash, 0x00, sizeof(tmp_hash));
if (hash) {
memcpy(tmp_hash, hash, hash_len);
} else {
res = calc_padding_digest(hash_algo, data, data_len, tmp_hash);
if (res)
goto exit;
}
pad = malloc(key_len);
if (!pad)
return RK_CRYPTO_ERR_OUT_OF_MEMORY;
switch (padding) {
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA1:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA224:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA256:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA384:
case RK_RSA_SIGN_PADDING_PKCS1_V15_SHA512:
res = rsa_padding_add_pkcs15_sign_type(hash_algo, key_len, tmp_hash, hash_len, pad);
if (res) {
D_TRACE("check pkcs V1.5 error.");
goto exit;
}
if (memcmp(pad, dec, key_len))
res = RK_CRYPTO_ERR_VERIFY;
break;
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA1:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA224:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA256:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA384:
case RK_RSA_SIGN_PADDING_PKCS1_PSS_SHA512:
res = rk_rsa_padding_check_pss_type(key_len, n_bits, hash_algo,
hash_len, tmp_hash, dec);
break;
default:
D_TRACE("unknown padding %d", padding);
res = RK_CRYPTO_ERR_PARAMETER;
break;
}
exit:
if (pad)
free(pad);
return res;
}