Key features:
Allwinner H618 SoC (Quad core Cortex-A53)
1/1.5/2/4 GiB LPDDR4 DRAM
1 USB 2.0 type C port (Power + OTG)
1 USB 2.0 host port
1Gbps Ethernet port
Micro-HDMI port
MicroSD slot
Installation:
Write the image to SD Card with dd.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Comfast CF-E393AX is a dual-band Wi-Fi 6 POE ceiling mount access point.
Oem firmware is a custom openwrt 21.02 snapshot version.
We can gain access via ssh once we remove the root password.
Hardware specification:
SoC: MediaTek MT7981A 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB DDR3
Ethernet: 1x 10/100/1000 Mbps built-in PHY (WAN)
1x 10/100/1000/2500 Mbps MaxLinear GPY211C (LAN)
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976D
LEDS: 1x (Red, Blue and Green)
Button: Reset
UART: 3.3v, 115200n8
--------------------------
| Layout |
| ----------------- |
| 4 | VCC GND TX RX | <= |
| ----------------- |
--------------------------
Gain SSH access:
1. Login into web interface (http://apipaddress/computer/login.html),
and download the
configuration(http://apipaddress/computer/config.html).
2. Rename downloaded backup config - 'backup.file to backup.tar.gz',
Enter 'fakeroot' command then decompress the configuration:
tar -zxf backup.tar.gz
3. Edit 'etc/shadow', update (remove) root password:
With password =
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
'root:$1$xf7D0Hfg$5gkjmvgQe4qJbe1fi/VLy1:19362:0:99999:7:::'
to
Without password =
'root::0:99999:7:::'
'root::0:99999:7:::'
4. Repack 'etc' directory back to a new backup file:
tar -zcf backup-ssh.tar.gz etc/
5. Rename new config tar.gz file to 'backup-ssh.file'
Exit fakeroot - 'exit'
6. Upload new configuration via web interface, now you
can SSH with the following:
'ssh -vv -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa root@192.168.10.1'.
Backup the mtd partitions
- https://openwrt.org/docs/guide-user/installation/generic.backup
7. Copy openwrt factory firmware to the tmp folder to install via ssh:
'scp -o HostKeyAlgorithms=+ssh-rsa \
-o PubkeyAcceptedAlgorithms=+ssh-rsa \
*-mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin \
root@192.168.10.1:/tmp/'
'sysupgrade -n -F \
/tmp/*--mediatek-filogic-comfast_cf-e393ax-squashfs-factory.bin'
8. Once led has stopped flashing - Connect via ssh with the
default openwrt ip address - 'ssh root@192.168.1.1'
9. SSH copy the openwrt sysupgrade firmware and upgrade
as per the default instructions.
Signed-off-by: David Bentham <db260179@gmail.com>
This reverts commit dcdcfc1511.
This is a firmware for third-party u-boot mod, which should not
be carried here by us.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Bump the U-Boot version used for BCM53xx to the 2024.01
version that includes all the needed patches upstream, so we
can get rid of those in the process.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Since the mainline implementation has been accepted by upstream,
it doesn't make sense to keep these hacks. People are also confused
with these "custom layouts".
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Since the mainline implementation has been accepted by upstream,
it doesn't make sense to keep these hacks. People are also confused
with these "custom layouts".
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Since the mainline implementation has been accepted by upstream,
it doesn't make sense to keep these hacks. People are also confused
with these "custom layouts".
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Linksys MX4200 is a 802.11ax Tri-band router/AP.
Specifications:
* CPU: Qualcomm IPQ8174 Quad core Cortex-A53 1.4GHz
* RAM: 512MB of DDR3
* Storage: 512Mb NAND
* Ethernet: 4x1G RJ45 ports (QCA8075)
* WLAN:
* 2.4GHz: Qualcomm QCN5024 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5054 2x2@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* 5GHz: Qualcomm QCN5054 4x4@80MHz or 2x2@160MHz 802.11a/b/g/n/ac/ax 2402 PHY rate
* LED-s:
* RGB system led
* Buttons: 1x Soft reset 1x WPS
* Power: 12V DC Jack
Installation instructions:
Open Linksys Web UI - http://192.168.1.1/ca or http://10.65.1.1/ca depending on your setup.
Login with your admin password. The default password can be found on a sticker under the device.
To enter into the support mode, click on the “CA” link and the bottom of the page.
Open the “Connectivity” menu and upload the squash-factory image with the “Choose file” button.
Click start. Ignore all the prompts and warnings by click “yes” in all the popups.
The Wifi radios are turned off by default. To configure the router, you will need to connect your computer to the LAN port of the device.
Then you would need to write openwrt to the other partition for it to work
- First Check booted partition
fw_printenv -n boot_part
- Then install Openwrt to the other partition if booted in slot 1:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq807x-linksys_mx4200v(X)-squashfs-factory.bin alt_kernel
- If in slot 2:
mtd -r -e kernel -n write openwrt-qualcommax-ipq807x-linksys_mx4200v(X)-squashfs-factory.bin kernel
Replace (X) with your model version either 1 or 2
Signed-off-by: Mohammad Sayful Islam <sayf.mohammad01@gmail.com>
Reviewed-by: Robert Marko <robimarko@gmail.com>
Since the mainline implementation has been accepted by upstream,
it doesn't make sense to keep these hacks. People are also confused
with these "custom layouts".
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
R32 is like the M32 part of the EAGLE PRO AI series from D-Link.
Specification:
- MT7622BV SoC with 2.4GHz wifi
- MT7975AN + MT7915AN for 5GHz
- MT7531BE Switch
- 512MB RAM
- 128 MB flash
- 2 LEDs (Status and Internet, both can be either orange or white)
- 2 buttons (WPS and Reset)
Compared to M32, the R32 has the following differences:
- 4 LAN ports instead of 2
- The recory image starts with DLK6E6015001 instaed of DLK6E6010001
- Individual LEDs for power and internet
- MAC address is stored at another offset in the ODM partition
MAC addresses:
- WAN MAC is stored in partition "Odm" at offset 0x81
- LAN (as printed on the device) is WAN MAC + 1
- WLAN MAC (2.4 GHz) is WAN MAC + 2
- WLAN MAC (5GHz) is WAN MAC + 3
Flashing via Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the internet LED blinks fast
- Open a Chromium based and goto http://192.168.0.1
- Download openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-a1-squashfs-recovery.bin
Flashing via uBoot:
- Open the case, connect to the UART console
- Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-initramfs-kernel.bin.
- You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
- Power on the device and select "1. System Load Linux to SDRAM via TFTP." in the boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to RAM will start. After a few seconds OpenWrt initramfs should start
- The initramfs is accessible via 192.168.1.1, change your IP address accordingly (or use multiple IP addresses on your interface)
- Create a backup of the Kernel1 partition, this file is required if a revert to stock should be done later
- Perform a sysupgrade using openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-squashfs-sysupgrade.bin
- Reboot the device. OpenWrt should start from flash now
Revert back to stock using the Recovery Web Interface:
- Set your IP address to 192.168.0.10, subnetmask 255.255.255.0
- Press the reset button while powering on the deivce
- Keep the reset button pressed until the internet LED blinks fast
- Open a Chromium based and goto http://192.168.0.1
- Flash a decrypted firmware image from D-Link. Decrypting an firmware image is described below.
Decrypting a D-Link firmware image:
- Download https://github.com/RolandoMagico/firmware-utils/blob/M32/src/m32-firmware-util.c
- Compile a binary from the downloaded file, e.g. gcc m32-firmware-util.c -lcrypto -o m32-firmware-util
- Run ./m32-firmware-util R32 --DecryptFactoryImage <OriginalFirmware> <OutputFile>
- Example for firmware R32A1_FW103B01: ./m32-firmware-util R32 --DecryptFactoryImage R32A1_FW103B01.bin R32A1_FW103B01.decrypted.bin
Revert back to stock using uBoot:
- Open the case, connect to the UART console
- Set your IP address to 10.10.10.3, subnet mask 255.255.255.0. Connect to one of the LAN interfaces of the router
- Run a tftp server which provides the previously created backup of the Kernel1 partition.
- You can rename the file to iverson_uImage (no extension), then you don't have to enter the whole file name in uboot later.
- Power on the device and select "2. System Load Linux Kernel then write to Flash via TFTP." in the boot menu
- Enter image file, tftp server IP and device IP (if they differ from the default).
- TFTP download to FLASH will start. After a few seconds the stock firmware should start again
There is also an image openwrt-mediatek-mt7622-dlink_eagle-pro-ai-r32-a1-squashfs-tftp.bin which can directly be flashed via U-Boot and TFTP.
It can be used if no backup of the Kernel1 partition is reuqired.
Flahsing via OEM web interface is currently not possible, the OEM images are encrypted. Creating images is only possible manually at the moment.
The support for the M32/R32 already includes support for flashing from the OEM web interface:
- The device tree contains both partitions (Kernel1 and Kernel2) with conditions to select the correct one based on the kernel command line
- The U-Boot variable "boot_part" is set accordingly during startup to finish the partition swap after flashing from the OEM web interface
- OpenWrt sysupgrade flashing always uses the partition where it was initially flashed to (no partition swap)
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
(based on support for ASUS RT-AX59U by liushiyou006)
SOC: MediaTek MT7986
RAM: 512MB DDR4
FLASH: 128MB SPI-NAND (Winbond W25N01GV)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: MediaTek MT7531 Switch
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Upgrade from AsusWRT to OpenWRT using UART
Download the OpenWrt initramfs image.
Copy the image to a TFTP server reachable at 192.168.1.70/24. Rename the image to rtax59u.bin.
Connect the PC with TFTP server to the RT-AX59U.
Set a static ip on the ethernet interface of your PC.
(ip address: 192.168.1.70, subnet mask:255.255.255.0)
Conect to the serial console, interrupt the autoboot process by pressing '4' when prompted.
Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.1.1
$ setenv serverip 192.168.1.70
$ tftpboot 0x46000000 rtax59u.bin
$ bootm 0x46000000
Wait for OpenWrt to boot. Transfer the sysupgrade image to the device using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Upgrade from AsusWRT to OpenWRT using WebUI
Download transit TRX file from https://drive.google.com/drive/folders/1A20QdjK7Udagu31FSszpWAk8-cGlCwsq
Upgrade firmware from WebUI (192.168.50.1) using downloaded TRX file
Wait for OpenWRT to boot (192.168.1.1).
Upgrade system with sysupgrade image using luci or uploading it through scp and executing sysupgrade command
MAC Address for WLAN 5g is not following the same algorithm as in AsusWRT.
We have increased by one the WLAN 5g to avoid collisions with other networks from WLAN 2g
when bit 28 is already set.
: Stock : OpenWrt
WLAN 2g (1) : C8:xx:xx:0D:xx:D4 : C8:xx:xx:0D:xx:D4
WLAN 2g (2) : : CA:xx:xx:0D:xx:D4
WLAN 2g (3) : : CE:xx:xx:0D:xx:D4
WLAN 5g (1) : CA:xx:xx:1D:xx:D4 : CA:xx:xx:1D:xx:D5
WLAN 5g (2) : : CE:xx:xx:1D:xx:D5
WLAN 5g (3) : : C2:xx:xx:1D:xx:D5
WLAN 2g (1) : 08:xx:xx:76:xx:BE : 08:xx:xx:76:xx:BE
WLAN 2g (2) : : 0A:xx:xx:76:xx:BE
WLAN 2g (3) : : 0E:xx:xx:76:xx:BE
WLAN 5g (1) : 0A:xx:xx:76:xx:BE : 0A:xx:xx:76:xx:BF
WLAN 5g (2) : : 0E:xx:xx:76:xx:BF
WLAN 5g (3) : : 02:xx:xx:76:xx:BF
Signed-off-by: Xavier Franquet <xavier@franquet.es>
Specifications:
SoC: MediaTek MT7981B
RAM: 256MiB
Flash: SPI-NAND 128 MiB
Switch: 1 WAN, 3 LAN (Gigabit)
Buttons: Reset, Mesh
Power: DC 12V 1A
WiFi: MT7976CN
UART: 115200n8
UART Layout:
VCC-RX-TX-GND
No. of Antennas: 6
Note: Upon opening the router, only 5 antennas were connected
to the mainboard.
Led Layout:
Power-Mesh-5gwifi-WAN-LAN3-LAN2-LAN1-2gWiFi
Buttons:
Reset-Mesh
Installation:
A. Through OpenWrt Dashboard:
If your router comes with OpenWrt preinstalled (modified by the seller),
you can easily upgrade by going to the dashboard (192.168.1.1) and then
navigate to System -> Backup/Flash firmware, then flash the firmware
B. Through TFTP
Standard installation via UART:
1. Connect USB Serial Adapter to the UART, (NOTE: Don't connect the VCC pin).
2. Power on the router. Make sure that you can access your router via UART.
3. Restart the router then repeatedly press ctrl + c to skip default boot.
4. Type > bootmenu
5. Press '2' to select upgrade firmware
6. Press 'Y' on 'Run image after upgrading?'
7. Press '0' and hit 'enter' to select TFTP client (default)
8. Fill the U-Boot's IP address and TFTP server's IP address.
9. Finally, enter the 'firmware' filename.
Signed-off-by: Ian Oderon <ianoderon@gmail.com>
Rostelecom RT-FE-1A is a wireless WiFi 5 router manufactured by Sercomm
company.
Device specification
--------------------
SoC Type: MediaTek MT7621AT
RAM: 256 MiB
Flash: 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615E): a/n/ac, 4x4
Ethernet: 5x GbE (WAN, LAN1, LAN2, LAN3, LAN4)
USB ports: No
Button: 2 buttons (Reset & WPS)
LEDs:
- 1x Power (green, unmanaged)
- 1x Status (green, gpio)
- 1x 2.4G (green, hardware, mt76-phy0)
- 1x 2.4G (blue, gpio)
- 1x 5G (green, hardware, mt76-phy1)
- 1x 5G (blue, gpio)
- 5x Ethernet (green, hardware, 4x LAN & WAN)
Power: 12 VDC, 1.5 A
Connector type: barrel
Bootloader: U-Boot
Installation
-----------------
1. Login to the router web interface (default http://192.168.0.1/)
under "admin" account
2. Navigate to Settings -> Configuration -> Save to Computer
3. Decode the configuration. For example, using cfgtool.py tool (see
related section):
cfgtool.py -u configurationBackup.cfg
4. Open configurationBackup.xml and find the following block:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="<some value>" writable="1" encryption="1" password="1" />
</OBJECT>
5. Replace <some value> by a new superadmin password and add a line
which enabling superadmin login after. For example, the block after
the changes:
<OBJECT name="User." type="object" writable="1" encryption="0" >
<OBJECT name="1." type="object" writable="1" encryption="0" >
<PARAMETER name="Password" type="string" value="s0meP@ss" writable="1" encryption="1" password="1" />
<PARAMETER name="Enable" type="boolean" value="1" writable="1" encryption="0"/>
</OBJECT>
6. Encode the configuration. For example, using cfgtool.py tool:
cfgtool.py -p configurationBackup.xml
7. Upload the changed configuration (configurationBackup_changed.cfg) to
the router
8. Login to the router web interface (superadmin:xxxxxxxxxx, where
xxxxxxxxxx is a new password from the p.5)
9. Enable SSH access to the router (Settings -> Access control -> SSH)
10. Connect to the router using SSH shell using superadmin account
11. Run in SSH shell:
sh
12. Make a mtd backup (optional, see related section)
13. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
14. Login to the router web interface under admin account
15. Remove dots from the OpenWrt factory image filename
16. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 192.168.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 192.168.0.2
MAC Addresses
-------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | f4:*:66 |
| WAN | label + 11 | f4:*:71 |
| 2g | label + 2 | f4:*:68 |
| 5g | label + 3 | f4:*:69 |
+-----+------------+---------+
The label MAC address was found in Factory, 0x21000
cfgtool.py
----------
A tool for decoding and encoding Sercomm configs.
Link: https://github.com/r3d5ky/sercomm_cfg_unpacker
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>